x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10}\approx 0.27944656
x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}\approx -10.07944656
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
60x^{2}+588x-169=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-588±\sqrt{588^{2}-4\times 60\left(-169\right)}}{2\times 60}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 60 എന്നതും b എന്നതിനായി 588 എന്നതും c എന്നതിനായി -169 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-588±\sqrt{345744-4\times 60\left(-169\right)}}{2\times 60}
588 സ്ക്വയർ ചെയ്യുക.
x=\frac{-588±\sqrt{345744-240\left(-169\right)}}{2\times 60}
-4, 60 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-588±\sqrt{345744+40560}}{2\times 60}
-240, -169 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-588±\sqrt{386304}}{2\times 60}
345744, 40560 എന്നതിൽ ചേർക്കുക.
x=\frac{-588±16\sqrt{1509}}{2\times 60}
386304 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-588±16\sqrt{1509}}{120}
2, 60 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{16\sqrt{1509}-588}{120}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-588±16\sqrt{1509}}{120} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -588, 16\sqrt{1509} എന്നതിൽ ചേർക്കുക.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10}
120 കൊണ്ട് -588+16\sqrt{1509} എന്നതിനെ ഹരിക്കുക.
x=\frac{-16\sqrt{1509}-588}{120}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-588±16\sqrt{1509}}{120} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -588 എന്നതിൽ നിന്ന് 16\sqrt{1509} വ്യവകലനം ചെയ്യുക.
x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
120 കൊണ്ട് -588-16\sqrt{1509} എന്നതിനെ ഹരിക്കുക.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10} x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
60x^{2}+588x-169=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
60x^{2}+588x-169-\left(-169\right)=-\left(-169\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 169 ചേർക്കുക.
60x^{2}+588x=-\left(-169\right)
അതിൽ നിന്നുതന്നെ -169 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
60x^{2}+588x=169
0 എന്നതിൽ നിന്ന് -169 വ്യവകലനം ചെയ്യുക.
\frac{60x^{2}+588x}{60}=\frac{169}{60}
ഇരുവശങ്ങളെയും 60 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{588}{60}x=\frac{169}{60}
60 കൊണ്ട് ഹരിക്കുന്നത്, 60 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{49}{5}x=\frac{169}{60}
12 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{588}{60} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}+\frac{49}{5}x+\left(\frac{49}{10}\right)^{2}=\frac{169}{60}+\left(\frac{49}{10}\right)^{2}
\frac{49}{10} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{49}{5}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{49}{10} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{49}{5}x+\frac{2401}{100}=\frac{169}{60}+\frac{2401}{100}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{49}{10} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{49}{5}x+\frac{2401}{100}=\frac{2012}{75}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{169}{60} എന്നത് \frac{2401}{100} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{49}{10}\right)^{2}=\frac{2012}{75}
x^{2}+\frac{49}{5}x+\frac{2401}{100} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{49}{10}\right)^{2}}=\sqrt{\frac{2012}{75}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{49}{10}=\frac{2\sqrt{1509}}{15} x+\frac{49}{10}=-\frac{2\sqrt{1509}}{15}
ലഘൂകരിക്കുക.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10} x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{49}{10} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}