x എന്നതിനായി സോൾവ് ചെയ്യുക
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
6x^{2}-x-40=0
ഇരുവശങ്ങളിൽ നിന്നും 40 കുറയ്ക്കുക.
a+b=-1 ab=6\left(-40\right)=-240
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 6x^{2}+ax+bx-40 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -240 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-16 b=15
സൊല്യൂഷൻ എന്നത് -1 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(6x^{2}-16x\right)+\left(15x-40\right)
6x^{2}-x-40 എന്നത് \left(6x^{2}-16x\right)+\left(15x-40\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(3x-8\right)+5\left(3x-8\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3x-8\right)\left(2x+5\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3x-8 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{8}{3} x=-\frac{5}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 3x-8=0, 2x+5=0 എന്നിവ സോൾവ് ചെയ്യുക.
6x^{2}-x=40
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
6x^{2}-x-40=40-40
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 40 കുറയ്ക്കുക.
6x^{2}-x-40=0
അതിൽ നിന്നുതന്നെ 40 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-40\right)}}{2\times 6}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 6 എന്നതും b എന്നതിനായി -1 എന്നതും c എന്നതിനായി -40 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-40\right)}}{2\times 6}
-4, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-1\right)±\sqrt{1+960}}{2\times 6}
-24, -40 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-1\right)±\sqrt{961}}{2\times 6}
1, 960 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-1\right)±31}{2\times 6}
961 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{1±31}{2\times 6}
-1 എന്നതിന്റെ വിപരീതം 1 ആണ്.
x=\frac{1±31}{12}
2, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{32}{12}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{1±31}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1, 31 എന്നതിൽ ചേർക്കുക.
x=\frac{8}{3}
4 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{32}{12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{30}{12}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{1±31}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1 എന്നതിൽ നിന്ന് 31 വ്യവകലനം ചെയ്യുക.
x=-\frac{5}{2}
6 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-30}{12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=\frac{8}{3} x=-\frac{5}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
6x^{2}-x=40
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{6x^{2}-x}{6}=\frac{40}{6}
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{1}{6}x=\frac{40}{6}
6 കൊണ്ട് ഹരിക്കുന്നത്, 6 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{1}{6}x=\frac{20}{3}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{40}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{20}{3}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{12} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{1}{6}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{1}{12} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{20}{3}+\frac{1}{144}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{12} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{961}{144}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{20}{3} എന്നത് \frac{1}{144} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{12}\right)^{2}=\frac{961}{144}
x^{2}-\frac{1}{6}x+\frac{1}{144} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{961}{144}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{12}=\frac{31}{12} x-\frac{1}{12}=-\frac{31}{12}
ലഘൂകരിക്കുക.
x=\frac{8}{3} x=-\frac{5}{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{1}{12} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}