പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

6x^{2}-x=28
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
6x^{2}-x-28=0
ഇരുവശങ്ങളിൽ നിന്നും 28 കുറയ്ക്കുക.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-28\right)}}{2\times 6}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 6 എന്നതും b എന്നതിനായി -1 എന്നതും c എന്നതിനായി -28 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-28\right)}}{2\times 6}
-4, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-1\right)±\sqrt{1+672}}{2\times 6}
-24, -28 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-1\right)±\sqrt{673}}{2\times 6}
1, 672 എന്നതിൽ ചേർക്കുക.
x=\frac{1±\sqrt{673}}{2\times 6}
-1 എന്നതിന്‍റെ വിപരീതം 1 ആണ്.
x=\frac{1±\sqrt{673}}{12}
2, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{673}+1}{12}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{1±\sqrt{673}}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1, \sqrt{673} എന്നതിൽ ചേർക്കുക.
x=\frac{1-\sqrt{673}}{12}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{1±\sqrt{673}}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1 എന്നതിൽ നിന്ന് \sqrt{673} വ്യവകലനം ചെയ്യുക.
x=\frac{\sqrt{673}+1}{12} x=\frac{1-\sqrt{673}}{12}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
6x^{2}-x=28
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
\frac{6x^{2}-x}{6}=\frac{28}{6}
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{1}{6}x=\frac{28}{6}
6 കൊണ്ട് ഹരിക്കുന്നത്, 6 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{1}{6}x=\frac{14}{3}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{28}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{14}{3}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{12} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{1}{6}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{12} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{14}{3}+\frac{1}{144}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{12} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{673}{144}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{14}{3} എന്നത് \frac{1}{144} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{12}\right)^{2}=\frac{673}{144}
x^{2}-\frac{1}{6}x+\frac{1}{144} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{673}{144}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{12}=\frac{\sqrt{673}}{12} x-\frac{1}{12}=-\frac{\sqrt{673}}{12}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{673}+1}{12} x=\frac{1-\sqrt{673}}{12}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{12} ചേർക്കുക.