പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=1 ab=6\left(-12\right)=-72
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 6x^{2}+ax+bx-12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -72 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-8 b=9
സൊല്യൂഷൻ എന്നത് 1 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(6x^{2}-8x\right)+\left(9x-12\right)
6x^{2}+x-12 എന്നത് \left(6x^{2}-8x\right)+\left(9x-12\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(3x-4\right)+3\left(3x-4\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3x-4\right)\left(2x+3\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3x-4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
6x^{2}+x-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-12\right)}}{2\times 6}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-1±\sqrt{1-4\times 6\left(-12\right)}}{2\times 6}
1 സ്ക്വയർ ചെയ്യുക.
x=\frac{-1±\sqrt{1-24\left(-12\right)}}{2\times 6}
-4, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1±\sqrt{1+288}}{2\times 6}
-24, -12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1±\sqrt{289}}{2\times 6}
1, 288 എന്നതിൽ ചേർക്കുക.
x=\frac{-1±17}{2\times 6}
289 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-1±17}{12}
2, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{16}{12}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-1±17}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1, 17 എന്നതിൽ ചേർക്കുക.
x=\frac{4}{3}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{16}{12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{18}{12}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-1±17}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1 എന്നതിൽ നിന്ന് 17 വ്യവകലനം ചെയ്യുക.
x=-\frac{3}{2}
6 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-18}{12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
6x^{2}+x-12=6\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{4}{3} എന്നതും, x_{2}-നായി -\frac{3}{2} എന്നതും പകരം വയ്‌ക്കുക.
6x^{2}+x-12=6\left(x-\frac{4}{3}\right)\left(x+\frac{3}{2}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
6x^{2}+x-12=6\times \frac{3x-4}{3}\left(x+\frac{3}{2}\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{4}{3} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
6x^{2}+x-12=6\times \frac{3x-4}{3}\times \frac{2x+3}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{3}{2} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
6x^{2}+x-12=6\times \frac{\left(3x-4\right)\left(2x+3\right)}{3\times 2}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{3x-4}{3}, \frac{2x+3}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
6x^{2}+x-12=6\times \frac{\left(3x-4\right)\left(2x+3\right)}{6}
3, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6x^{2}+x-12=\left(3x-4\right)\left(2x+3\right)
6, 6 എന്നിവയിലെ 6 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.