ഘടകം
\left(2v+5\right)\left(3v+1\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(2v+5\right)\left(3v+1\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=17 ab=6\times 5=30
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 6v^{2}+av+bv+5 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,30 2,15 3,10 5,6
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. 30 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+30=31 2+15=17 3+10=13 5+6=11
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=2 b=15
സൊല്യൂഷൻ എന്നത് 17 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(6v^{2}+2v\right)+\left(15v+5\right)
6v^{2}+17v+5 എന്നത് \left(6v^{2}+2v\right)+\left(15v+5\right) എന്നായി തിരുത്തിയെഴുതുക.
2v\left(3v+1\right)+5\left(3v+1\right)
ആദ്യ ഗ്രൂപ്പിലെ 2v എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3v+1\right)\left(2v+5\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3v+1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
6v^{2}+17v+5=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
v=\frac{-17±\sqrt{17^{2}-4\times 6\times 5}}{2\times 6}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
v=\frac{-17±\sqrt{289-4\times 6\times 5}}{2\times 6}
17 സ്ക്വയർ ചെയ്യുക.
v=\frac{-17±\sqrt{289-24\times 5}}{2\times 6}
-4, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
v=\frac{-17±\sqrt{289-120}}{2\times 6}
-24, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
v=\frac{-17±\sqrt{169}}{2\times 6}
289, -120 എന്നതിൽ ചേർക്കുക.
v=\frac{-17±13}{2\times 6}
169 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
v=\frac{-17±13}{12}
2, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
v=-\frac{4}{12}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, v=\frac{-17±13}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -17, 13 എന്നതിൽ ചേർക്കുക.
v=-\frac{1}{3}
4 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-4}{12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
v=-\frac{30}{12}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, v=\frac{-17±13}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -17 എന്നതിൽ നിന്ന് 13 വ്യവകലനം ചെയ്യുക.
v=-\frac{5}{2}
6 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-30}{12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
6v^{2}+17v+5=6\left(v-\left(-\frac{1}{3}\right)\right)\left(v-\left(-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി -\frac{1}{3} എന്നതും, x_{2}-നായി -\frac{5}{2} എന്നതും പകരം വയ്ക്കുക.
6v^{2}+17v+5=6\left(v+\frac{1}{3}\right)\left(v+\frac{5}{2}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്പ്രഷനുകളും ലളിതമാക്കുക.
6v^{2}+17v+5=6\times \frac{3v+1}{3}\left(v+\frac{5}{2}\right)
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{3} എന്നത് v എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
6v^{2}+17v+5=6\times \frac{3v+1}{3}\times \frac{2v+5}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{5}{2} എന്നത് v എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
6v^{2}+17v+5=6\times \frac{\left(3v+1\right)\left(2v+5\right)}{3\times 2}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{3v+1}{3}, \frac{2v+5}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
6v^{2}+17v+5=6\times \frac{\left(3v+1\right)\left(2v+5\right)}{6}
3, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6v^{2}+17v+5=\left(3v+1\right)\left(2v+5\right)
6, 6 എന്നിവയിലെ 6 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}