മൂല്യനിർണ്ണയം ചെയ്യുക
\left(5m-4\right)\left(m+1\right)
ഘടകം
\left(5m-4\right)\left(m+1\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
5m^{2}-3m+2-\left(-4m\right)-6
5m^{2} നേടാൻ 6m^{2}, -m^{2} എന്നിവ യോജിപ്പിക്കുക.
5m^{2}-3m+2+4m-6
-4m എന്നതിന്റെ വിപരീതം 4m ആണ്.
5m^{2}+m+2-6
m നേടാൻ -3m, 4m എന്നിവ യോജിപ്പിക്കുക.
5m^{2}+m-4
-4 നേടാൻ 2 എന്നതിൽ നിന്ന് 6 കുറയ്ക്കുക.
5m^{2}+m-4
ഒരു പോലുള്ള പദങ്ങൾ ഗുണിച്ച് യോജിപ്പിക്കുക.
a+b=1 ab=5\left(-4\right)=-20
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 5m^{2}+am+bm-4 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,20 -2,10 -4,5
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -20 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+20=19 -2+10=8 -4+5=1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-4 b=5
സൊല്യൂഷൻ എന്നത് 1 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(5m^{2}-4m\right)+\left(5m-4\right)
5m^{2}+m-4 എന്നത് \left(5m^{2}-4m\right)+\left(5m-4\right) എന്നായി തിരുത്തിയെഴുതുക.
m\left(5m-4\right)+5m-4
5m^{2}-4m എന്നതിൽ m ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5m-4\right)\left(m+1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 5m-4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}