പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

18+\left(2x+4\right)x=24
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഗുണിക്കുക.
18+2x^{2}+4x=24
x കൊണ്ട് 2x+4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
18+2x^{2}+4x-24=0
ഇരുവശങ്ങളിൽ നിന്നും 24 കുറയ്ക്കുക.
-6+2x^{2}+4x=0
-6 നേടാൻ 18 എന്നതിൽ നിന്ന് 24 കുറയ്ക്കുക.
2x^{2}+4x-6=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-6\right)}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി 4 എന്നതും c എന്നതിനായി -6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-4±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-4±\sqrt{16-8\left(-6\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{16+48}}{2\times 2}
-8, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{64}}{2\times 2}
16, 48 എന്നതിൽ ചേർക്കുക.
x=\frac{-4±8}{2\times 2}
64 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-4±8}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{4}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-4±8}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4, 8 എന്നതിൽ ചേർക്കുക.
x=1
4 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x=-\frac{12}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-4±8}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4 എന്നതിൽ നിന്ന് 8 വ്യവകലനം ചെയ്യുക.
x=-3
4 കൊണ്ട് -12 എന്നതിനെ ഹരിക്കുക.
x=1 x=-3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
18+\left(2x+4\right)x=24
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഗുണിക്കുക.
18+2x^{2}+4x=24
x കൊണ്ട് 2x+4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}+4x=24-18
ഇരുവശങ്ങളിൽ നിന്നും 18 കുറയ്ക്കുക.
2x^{2}+4x=6
6 നേടാൻ 24 എന്നതിൽ നിന്ന് 18 കുറയ്ക്കുക.
\frac{2x^{2}+4x}{2}=\frac{6}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{4}{2}x=\frac{6}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+2x=\frac{6}{2}
2 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x^{2}+2x=3
2 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
x^{2}+2x+1^{2}=3+1^{2}
1 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 1 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+2x+1=3+1
1 സ്ക്വയർ ചെയ്യുക.
x^{2}+2x+1=4
3, 1 എന്നതിൽ ചേർക്കുക.
\left(x+1\right)^{2}=4
x^{2}+2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+1=2 x+1=-2
ലഘൂകരിക്കുക.
x=1 x=-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.