പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-30 ab=56\times 1=56
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 56x^{2}+ax+bx+1 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-56 -2,-28 -4,-14 -7,-8
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 56 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-56=-57 -2-28=-30 -4-14=-18 -7-8=-15
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-28 b=-2
സൊല്യൂഷൻ എന്നത് -30 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(56x^{2}-28x\right)+\left(-2x+1\right)
56x^{2}-30x+1 എന്നത് \left(56x^{2}-28x\right)+\left(-2x+1\right) എന്നായി തിരുത്തിയെഴുതുക.
28x\left(2x-1\right)-\left(2x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ 28x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2x-1\right)\left(28x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{1}{2} x=\frac{1}{28}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 2x-1=0, 28x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
56x^{2}-30x+1=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 56}}{2\times 56}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 56 എന്നതും b എന്നതിനായി -30 എന്നതും c എന്നതിനായി 1 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 56}}{2\times 56}
-30 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-30\right)±\sqrt{900-224}}{2\times 56}
-4, 56 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-30\right)±\sqrt{676}}{2\times 56}
900, -224 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-30\right)±26}{2\times 56}
676 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{30±26}{2\times 56}
-30 എന്നതിന്‍റെ വിപരീതം 30 ആണ്.
x=\frac{30±26}{112}
2, 56 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{56}{112}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{30±26}{112} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 30, 26 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{2}
56 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{56}{112} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{4}{112}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{30±26}{112} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 30 എന്നതിൽ നിന്ന് 26 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{28}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{112} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{1}{2} x=\frac{1}{28}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
56x^{2}-30x+1=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
56x^{2}-30x+1-1=-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
56x^{2}-30x=-1
അതിൽ നിന്നുതന്നെ 1 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{56x^{2}-30x}{56}=-\frac{1}{56}
ഇരുവശങ്ങളെയും 56 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{30}{56}\right)x=-\frac{1}{56}
56 കൊണ്ട് ഹരിക്കുന്നത്, 56 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{15}{28}x=-\frac{1}{56}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-30}{56} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{15}{28}x+\left(-\frac{15}{56}\right)^{2}=-\frac{1}{56}+\left(-\frac{15}{56}\right)^{2}
-\frac{15}{56} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{15}{28}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{15}{56} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{15}{28}x+\frac{225}{3136}=-\frac{1}{56}+\frac{225}{3136}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{15}{56} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{15}{28}x+\frac{225}{3136}=\frac{169}{3136}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{56} എന്നത് \frac{225}{3136} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{15}{56}\right)^{2}=\frac{169}{3136}
x^{2}-\frac{15}{28}x+\frac{225}{3136} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{15}{56}\right)^{2}}=\sqrt{\frac{169}{3136}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{15}{56}=\frac{13}{56} x-\frac{15}{56}=-\frac{13}{56}
ലഘൂകരിക്കുക.
x=\frac{1}{2} x=\frac{1}{28}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{15}{56} ചേർക്കുക.