ഘടകം
\left(4z-3\right)\left(13z-1\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(4z-3\right)\left(13z-1\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=-43 ab=52\times 3=156
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 52z^{2}+az+bz+3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-156 -2,-78 -3,-52 -4,-39 -6,-26 -12,-13
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. 156 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-156=-157 -2-78=-80 -3-52=-55 -4-39=-43 -6-26=-32 -12-13=-25
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-39 b=-4
സൊല്യൂഷൻ എന്നത് -43 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(52z^{2}-39z\right)+\left(-4z+3\right)
52z^{2}-43z+3 എന്നത് \left(52z^{2}-39z\right)+\left(-4z+3\right) എന്നായി തിരുത്തിയെഴുതുക.
13z\left(4z-3\right)-\left(4z-3\right)
ആദ്യ ഗ്രൂപ്പിലെ 13z എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(4z-3\right)\left(13z-1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 4z-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
52z^{2}-43z+3=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
z=\frac{-\left(-43\right)±\sqrt{\left(-43\right)^{2}-4\times 52\times 3}}{2\times 52}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
z=\frac{-\left(-43\right)±\sqrt{1849-4\times 52\times 3}}{2\times 52}
-43 സ്ക്വയർ ചെയ്യുക.
z=\frac{-\left(-43\right)±\sqrt{1849-208\times 3}}{2\times 52}
-4, 52 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
z=\frac{-\left(-43\right)±\sqrt{1849-624}}{2\times 52}
-208, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
z=\frac{-\left(-43\right)±\sqrt{1225}}{2\times 52}
1849, -624 എന്നതിൽ ചേർക്കുക.
z=\frac{-\left(-43\right)±35}{2\times 52}
1225 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
z=\frac{43±35}{2\times 52}
-43 എന്നതിന്റെ വിപരീതം 43 ആണ്.
z=\frac{43±35}{104}
2, 52 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
z=\frac{78}{104}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, z=\frac{43±35}{104} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 43, 35 എന്നതിൽ ചേർക്കുക.
z=\frac{3}{4}
26 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{78}{104} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
z=\frac{8}{104}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, z=\frac{43±35}{104} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 43 എന്നതിൽ നിന്ന് 35 വ്യവകലനം ചെയ്യുക.
z=\frac{1}{13}
8 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{8}{104} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
52z^{2}-43z+3=52\left(z-\frac{3}{4}\right)\left(z-\frac{1}{13}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി \frac{3}{4} എന്നതും, x_{2}-നായി \frac{1}{13} എന്നതും പകരം വയ്ക്കുക.
52z^{2}-43z+3=52\times \frac{4z-3}{4}\left(z-\frac{1}{13}\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് z എന്നതിൽ നിന്ന് \frac{3}{4} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
52z^{2}-43z+3=52\times \frac{4z-3}{4}\times \frac{13z-1}{13}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് z എന്നതിൽ നിന്ന് \frac{1}{13} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
52z^{2}-43z+3=52\times \frac{\left(4z-3\right)\left(13z-1\right)}{4\times 13}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{4z-3}{4}, \frac{13z-1}{13} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
52z^{2}-43z+3=52\times \frac{\left(4z-3\right)\left(13z-1\right)}{52}
4, 13 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
52z^{2}-43z+3=\left(4z-3\right)\left(13z-1\right)
52, 52 എന്നിവയിലെ 52 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}