ഘടകം
4\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)x^{9}
മൂല്യനിർണ്ണയം ചെയ്യുക
500x^{15}+108x^{9}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
4\left(125x^{15}+27x^{9}\right)
4 ഘടക ലഘൂകരണം ചെയ്യുക.
x^{9}\left(125x^{6}+27\right)
125x^{15}+27x^{9} പരിഗണിക്കുക. x^{9} ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)
125x^{6}+27 പരിഗണിക്കുക. 125x^{6}+27 എന്നത് \left(5x^{2}\right)^{3}+3^{3} എന്നായി തിരുത്തിയെഴുതുക. ക്യൂബുകളുടെ തുക ഈ നിയമം ഉപയോഗിച്ച് ഫാക്ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
4x^{9}\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക. ഇനിപ്പറയുന്ന ബഹുപദങ്ങളിൽ പരിമേയ വർഗ്ഗങ്ങൾ ഒന്നും ഇല്ലാത്തതിനാൽ അവ ഫാക്ടർ ചെയ്തില്ല: 5x^{2}+3,25x^{4}-15x^{2}+9.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}