പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

-x^{2}+3x+5=12
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
-x^{2}+3x+5-12=12-12
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 12 കുറയ്ക്കുക.
-x^{2}+3x+5-12=0
അതിൽ നിന്നുതന്നെ 12 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
-x^{2}+3x-7=0
5 എന്നതിൽ നിന്ന് 12 വ്യവകലനം ചെയ്യുക.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി 3 എന്നതും c എന്നതിനായി -7 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-3±\sqrt{9+4\left(-7\right)}}{2\left(-1\right)}
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3±\sqrt{9-28}}{2\left(-1\right)}
4, -7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3±\sqrt{-19}}{2\left(-1\right)}
9, -28 എന്നതിൽ ചേർക്കുക.
x=\frac{-3±\sqrt{19}i}{2\left(-1\right)}
-19 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-3±\sqrt{19}i}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3+\sqrt{19}i}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-3±\sqrt{19}i}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3, i\sqrt{19} എന്നതിൽ ചേർക്കുക.
x=\frac{-\sqrt{19}i+3}{2}
-2 കൊണ്ട് -3+i\sqrt{19} എന്നതിനെ ഹരിക്കുക.
x=\frac{-\sqrt{19}i-3}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-3±\sqrt{19}i}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3 എന്നതിൽ നിന്ന് i\sqrt{19} വ്യവകലനം ചെയ്യുക.
x=\frac{3+\sqrt{19}i}{2}
-2 കൊണ്ട് -3-i\sqrt{19} എന്നതിനെ ഹരിക്കുക.
x=\frac{-\sqrt{19}i+3}{2} x=\frac{3+\sqrt{19}i}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-x^{2}+3x+5=12
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
-x^{2}+3x+5-5=12-5
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
-x^{2}+3x=12-5
അതിൽ നിന്നുതന്നെ 5 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
-x^{2}+3x=7
12 എന്നതിൽ നിന്ന് 5 വ്യവകലനം ചെയ്യുക.
\frac{-x^{2}+3x}{-1}=\frac{7}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{3}{-1}x=\frac{7}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-3x=\frac{7}{-1}
-1 കൊണ്ട് 3 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x=-7
-1 കൊണ്ട് 7 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-7+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=-7+\frac{9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-3x+\frac{9}{4}=-\frac{19}{4}
-7, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{3}{2}\right)^{2}=-\frac{19}{4}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{\sqrt{19}i}{2} x-\frac{3}{2}=-\frac{\sqrt{19}i}{2}
ലഘൂകരിക്കുക.
x=\frac{3+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+3}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.