y എന്നതിനായി സോൾവ് ചെയ്യുക
y=\frac{\sqrt{1801}-59}{70}\approx -0.236597281
y=\frac{-\sqrt{1801}-59}{70}\approx -1.449117005
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
5y+5y^{2}+6\left(5y+9\right)y=-12
5y^{2} നേടാൻ 9y^{2}, -4y^{2} എന്നിവ യോജിപ്പിക്കുക.
5y+5y^{2}+\left(30y+54\right)y=-12
5y+9 കൊണ്ട് 6 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
5y+5y^{2}+30y^{2}+54y=-12
y കൊണ്ട് 30y+54 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
5y+35y^{2}+54y=-12
35y^{2} നേടാൻ 5y^{2}, 30y^{2} എന്നിവ യോജിപ്പിക്കുക.
59y+35y^{2}=-12
59y നേടാൻ 5y, 54y എന്നിവ യോജിപ്പിക്കുക.
59y+35y^{2}+12=0
12 ഇരു വശങ്ങളിലും ചേർക്കുക.
35y^{2}+59y+12=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y=\frac{-59±\sqrt{59^{2}-4\times 35\times 12}}{2\times 35}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 35 എന്നതും b എന്നതിനായി 59 എന്നതും c എന്നതിനായി 12 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-59±\sqrt{3481-4\times 35\times 12}}{2\times 35}
59 സ്ക്വയർ ചെയ്യുക.
y=\frac{-59±\sqrt{3481-140\times 12}}{2\times 35}
-4, 35 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-59±\sqrt{3481-1680}}{2\times 35}
-140, 12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-59±\sqrt{1801}}{2\times 35}
3481, -1680 എന്നതിൽ ചേർക്കുക.
y=\frac{-59±\sqrt{1801}}{70}
2, 35 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{\sqrt{1801}-59}{70}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, y=\frac{-59±\sqrt{1801}}{70} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -59, \sqrt{1801} എന്നതിൽ ചേർക്കുക.
y=\frac{-\sqrt{1801}-59}{70}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, y=\frac{-59±\sqrt{1801}}{70} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -59 എന്നതിൽ നിന്ന് \sqrt{1801} വ്യവകലനം ചെയ്യുക.
y=\frac{\sqrt{1801}-59}{70} y=\frac{-\sqrt{1801}-59}{70}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
5y+5y^{2}+6\left(5y+9\right)y=-12
5y^{2} നേടാൻ 9y^{2}, -4y^{2} എന്നിവ യോജിപ്പിക്കുക.
5y+5y^{2}+\left(30y+54\right)y=-12
5y+9 കൊണ്ട് 6 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
5y+5y^{2}+30y^{2}+54y=-12
y കൊണ്ട് 30y+54 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
5y+35y^{2}+54y=-12
35y^{2} നേടാൻ 5y^{2}, 30y^{2} എന്നിവ യോജിപ്പിക്കുക.
59y+35y^{2}=-12
59y നേടാൻ 5y, 54y എന്നിവ യോജിപ്പിക്കുക.
35y^{2}+59y=-12
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{35y^{2}+59y}{35}=-\frac{12}{35}
ഇരുവശങ്ങളെയും 35 കൊണ്ട് ഹരിക്കുക.
y^{2}+\frac{59}{35}y=-\frac{12}{35}
35 കൊണ്ട് ഹരിക്കുന്നത്, 35 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
y^{2}+\frac{59}{35}y+\left(\frac{59}{70}\right)^{2}=-\frac{12}{35}+\left(\frac{59}{70}\right)^{2}
\frac{59}{70} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{59}{35}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{59}{70} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
y^{2}+\frac{59}{35}y+\frac{3481}{4900}=-\frac{12}{35}+\frac{3481}{4900}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{59}{70} സ്ക്വയർ ചെയ്യുക.
y^{2}+\frac{59}{35}y+\frac{3481}{4900}=\frac{1801}{4900}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{12}{35} എന്നത് \frac{3481}{4900} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(y+\frac{59}{70}\right)^{2}=\frac{1801}{4900}
y^{2}+\frac{59}{35}y+\frac{3481}{4900} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y+\frac{59}{70}\right)^{2}}=\sqrt{\frac{1801}{4900}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y+\frac{59}{70}=\frac{\sqrt{1801}}{70} y+\frac{59}{70}=-\frac{\sqrt{1801}}{70}
ലഘൂകരിക്കുക.
y=\frac{\sqrt{1801}-59}{70} y=\frac{-\sqrt{1801}-59}{70}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{59}{70} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}