പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5\left(x^{2}-4x\right)
5 ഘടക ലഘൂകരണം ചെയ്യുക.
x\left(x-4\right)
x^{2}-4x പരിഗണിക്കുക. x ഘടക ലഘൂകരണം ചെയ്യുക.
5x\left(x-4\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
5x^{2}-20x=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 5}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-20\right)±20}{2\times 5}
\left(-20\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{20±20}{2\times 5}
-20 എന്നതിന്‍റെ വിപരീതം 20 ആണ്.
x=\frac{20±20}{10}
2, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{40}{10}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{20±20}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 20, 20 എന്നതിൽ ചേർക്കുക.
x=4
10 കൊണ്ട് 40 എന്നതിനെ ഹരിക്കുക.
x=\frac{0}{10}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{20±20}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 20 എന്നതിൽ നിന്ന് 20 വ്യവകലനം ചെയ്യുക.
x=0
10 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
5x^{2}-20x=5\left(x-4\right)x
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 4 എന്നതും, x_{2}-നായി 0 എന്നതും പകരം വയ്‌ക്കുക.