പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5x^{2}+21x+4-4=0
ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
5x^{2}+21x=0
0 നേടാൻ 4 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
x\left(5x+21\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=-\frac{21}{5}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 5x+21=0 എന്നിവ സോൾവ് ചെയ്യുക.
5x^{2}+21x+4=4
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
5x^{2}+21x+4-4=4-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
5x^{2}+21x+4-4=0
അതിൽ നിന്നുതന്നെ 4 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
5x^{2}+21x=0
4 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
x=\frac{-21±\sqrt{21^{2}}}{2\times 5}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 5 എന്നതും b എന്നതിനായി 21 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-21±21}{2\times 5}
21^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-21±21}{10}
2, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0}{10}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-21±21}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -21, 21 എന്നതിൽ ചേർക്കുക.
x=0
10 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{42}{10}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-21±21}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -21 എന്നതിൽ നിന്ന് 21 വ്യവകലനം ചെയ്യുക.
x=-\frac{21}{5}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-42}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=0 x=-\frac{21}{5}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
5x^{2}+21x+4=4
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
5x^{2}+21x+4-4=4-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
5x^{2}+21x=4-4
അതിൽ നിന്നുതന്നെ 4 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
5x^{2}+21x=0
4 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
\frac{5x^{2}+21x}{5}=\frac{0}{5}
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{21}{5}x=\frac{0}{5}
5 കൊണ്ട് ഹരിക്കുന്നത്, 5 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{21}{5}x=0
5 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{21}{5}x+\left(\frac{21}{10}\right)^{2}=\left(\frac{21}{10}\right)^{2}
\frac{21}{10} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{21}{5}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{21}{10} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{21}{5}x+\frac{441}{100}=\frac{441}{100}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{21}{10} സ്ക്വയർ ചെയ്യുക.
\left(x+\frac{21}{10}\right)^{2}=\frac{441}{100}
x^{2}+\frac{21}{5}x+\frac{441}{100} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{21}{10}\right)^{2}}=\sqrt{\frac{441}{100}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{21}{10}=\frac{21}{10} x+\frac{21}{10}=-\frac{21}{10}
ലഘൂകരിക്കുക.
x=0 x=-\frac{21}{5}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{21}{10} കുറയ്ക്കുക.