പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=13 ab=5\left(-6\right)=-30
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 5w^{2}+aw+bw-6 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,30 -2,15 -3,10 -5,6
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -30 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-2 b=15
സൊല്യൂഷൻ എന്നത് 13 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(5w^{2}-2w\right)+\left(15w-6\right)
5w^{2}+13w-6 എന്നത് \left(5w^{2}-2w\right)+\left(15w-6\right) എന്നായി തിരുത്തിയെഴുതുക.
w\left(5w-2\right)+3\left(5w-2\right)
ആദ്യ ഗ്രൂപ്പിലെ w എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5w-2\right)\left(w+3\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 5w-2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
5w^{2}+13w-6=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
w=\frac{-13±\sqrt{13^{2}-4\times 5\left(-6\right)}}{2\times 5}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
w=\frac{-13±\sqrt{169-4\times 5\left(-6\right)}}{2\times 5}
13 സ്ക്വയർ ചെയ്യുക.
w=\frac{-13±\sqrt{169-20\left(-6\right)}}{2\times 5}
-4, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
w=\frac{-13±\sqrt{169+120}}{2\times 5}
-20, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
w=\frac{-13±\sqrt{289}}{2\times 5}
169, 120 എന്നതിൽ ചേർക്കുക.
w=\frac{-13±17}{2\times 5}
289 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
w=\frac{-13±17}{10}
2, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
w=\frac{4}{10}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, w=\frac{-13±17}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -13, 17 എന്നതിൽ ചേർക്കുക.
w=\frac{2}{5}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
w=-\frac{30}{10}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, w=\frac{-13±17}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -13 എന്നതിൽ നിന്ന് 17 വ്യവകലനം ചെയ്യുക.
w=-3
10 കൊണ്ട് -30 എന്നതിനെ ഹരിക്കുക.
5w^{2}+13w-6=5\left(w-\frac{2}{5}\right)\left(w-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{2}{5} എന്നതും, x_{2}-നായി -3 എന്നതും പകരം വയ്‌ക്കുക.
5w^{2}+13w-6=5\left(w-\frac{2}{5}\right)\left(w+3\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
5w^{2}+13w-6=5\times \frac{5w-2}{5}\left(w+3\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് w എന്നതിൽ നിന്ന് \frac{2}{5} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
5w^{2}+13w-6=\left(5w-2\right)\left(w+3\right)
5, 5 എന്നിവയിലെ 5 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.