x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{\sqrt{35}}{5}-15\approx -13.816784043
x=-\frac{\sqrt{35}}{5}-15\approx -16.183215957
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
5\left(x+15\right)^{2}-7+7=7
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 7 ചേർക്കുക.
5\left(x+15\right)^{2}=7
അതിൽ നിന്നുതന്നെ 7 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{5\left(x+15\right)^{2}}{5}=\frac{7}{5}
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
\left(x+15\right)^{2}=\frac{7}{5}
5 കൊണ്ട് ഹരിക്കുന്നത്, 5 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x+15=\frac{\sqrt{35}}{5} x+15=-\frac{\sqrt{35}}{5}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+15-15=\frac{\sqrt{35}}{5}-15 x+15-15=-\frac{\sqrt{35}}{5}-15
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 15 കുറയ്ക്കുക.
x=\frac{\sqrt{35}}{5}-15 x=-\frac{\sqrt{35}}{5}-15
അതിൽ നിന്നുതന്നെ 15 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}