ഘടകം
\left(x-5\right)\left(5x+2\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(x-5\right)\left(5x+2\right)
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=-23 ab=5\left(-10\right)=-50
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 5x^{2}+ax+bx-10 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-50 2,-25 5,-10
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -50 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-50=-49 2-25=-23 5-10=-5
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-25 b=2
സൊല്യൂഷൻ എന്നത് -23 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(5x^{2}-25x\right)+\left(2x-10\right)
5x^{2}-23x-10 എന്നത് \left(5x^{2}-25x\right)+\left(2x-10\right) എന്നായി തിരുത്തിയെഴുതുക.
5x\left(x-5\right)+2\left(x-5\right)
ആദ്യ ഗ്രൂപ്പിലെ 5x എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-5\right)\left(5x+2\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-5 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
5x^{2}-23x-10=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 5\left(-10\right)}}{2\times 5}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-23\right)±\sqrt{529-4\times 5\left(-10\right)}}{2\times 5}
-23 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-23\right)±\sqrt{529-20\left(-10\right)}}{2\times 5}
-4, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-23\right)±\sqrt{529+200}}{2\times 5}
-20, -10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-23\right)±\sqrt{729}}{2\times 5}
529, 200 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-23\right)±27}{2\times 5}
729 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{23±27}{2\times 5}
-23 എന്നതിന്റെ വിപരീതം 23 ആണ്.
x=\frac{23±27}{10}
2, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{50}{10}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{23±27}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 23, 27 എന്നതിൽ ചേർക്കുക.
x=5
10 കൊണ്ട് 50 എന്നതിനെ ഹരിക്കുക.
x=-\frac{4}{10}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{23±27}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 23 എന്നതിൽ നിന്ന് 27 വ്യവകലനം ചെയ്യുക.
x=-\frac{2}{5}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-4}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
5x^{2}-23x-10=5\left(x-5\right)\left(x-\left(-\frac{2}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി 5 എന്നതും, x_{2}-നായി -\frac{2}{5} എന്നതും പകരം വയ്ക്കുക.
5x^{2}-23x-10=5\left(x-5\right)\left(x+\frac{2}{5}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്പ്രഷനുകളും ലളിതമാക്കുക.
5x^{2}-23x-10=5\left(x-5\right)\times \frac{5x+2}{5}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{2}{5} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
5x^{2}-23x-10=\left(x-5\right)\left(5x+2\right)
5, 5 എന്നിവയിലെ 5 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}