പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5x^{2}-11x=-2
ഇരുവശങ്ങളിൽ നിന്നും 11x കുറയ്ക്കുക.
5x^{2}-11x+2=0
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
a+b=-11 ab=5\times 2=10
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 5x^{2}+ax+bx+2 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-10 -2,-5
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 10 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-10=-11 -2-5=-7
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-10 b=-1
സൊല്യൂഷൻ എന്നത് -11 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(5x^{2}-10x\right)+\left(-x+2\right)
5x^{2}-11x+2 എന്നത് \left(5x^{2}-10x\right)+\left(-x+2\right) എന്നായി തിരുത്തിയെഴുതുക.
5x\left(x-2\right)-\left(x-2\right)
ആദ്യ ഗ്രൂപ്പിലെ 5x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-2\right)\left(5x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=2 x=\frac{1}{5}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-2=0, 5x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
5x^{2}-11x=-2
ഇരുവശങ്ങളിൽ നിന്നും 11x കുറയ്ക്കുക.
5x^{2}-11x+2=0
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 5\times 2}}{2\times 5}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 5 എന്നതും b എന്നതിനായി -11 എന്നതും c എന്നതിനായി 2 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 5\times 2}}{2\times 5}
-11 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-11\right)±\sqrt{121-20\times 2}}{2\times 5}
-4, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-11\right)±\sqrt{121-40}}{2\times 5}
-20, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-11\right)±\sqrt{81}}{2\times 5}
121, -40 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-11\right)±9}{2\times 5}
81 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{11±9}{2\times 5}
-11 എന്നതിന്‍റെ വിപരീതം 11 ആണ്.
x=\frac{11±9}{10}
2, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{20}{10}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{11±9}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 11, 9 എന്നതിൽ ചേർക്കുക.
x=2
10 കൊണ്ട് 20 എന്നതിനെ ഹരിക്കുക.
x=\frac{2}{10}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{11±9}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 11 എന്നതിൽ നിന്ന് 9 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{5}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=2 x=\frac{1}{5}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
5x^{2}-11x=-2
ഇരുവശങ്ങളിൽ നിന്നും 11x കുറയ്ക്കുക.
\frac{5x^{2}-11x}{5}=-\frac{2}{5}
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{11}{5}x=-\frac{2}{5}
5 കൊണ്ട് ഹരിക്കുന്നത്, 5 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{11}{5}x+\left(-\frac{11}{10}\right)^{2}=-\frac{2}{5}+\left(-\frac{11}{10}\right)^{2}
-\frac{11}{10} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{11}{5}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{11}{10} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{11}{5}x+\frac{121}{100}=-\frac{2}{5}+\frac{121}{100}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{11}{10} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{11}{5}x+\frac{121}{100}=\frac{81}{100}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{2}{5} എന്നത് \frac{121}{100} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{11}{10}\right)^{2}=\frac{81}{100}
x^{2}-\frac{11}{5}x+\frac{121}{100} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{11}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{11}{10}=\frac{9}{10} x-\frac{11}{10}=-\frac{9}{10}
ലഘൂകരിക്കുക.
x=2 x=\frac{1}{5}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{11}{10} ചേർക്കുക.