x എന്നതിനായി സോൾവ് ചെയ്യുക
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
x=3
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
-3x^{2}+4x+15=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=4 ab=-3\times 15=-45
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -3x^{2}+ax+bx+15 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,45 -3,15 -5,9
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -45 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+45=44 -3+15=12 -5+9=4
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=9 b=-5
സൊല്യൂഷൻ എന്നത് 4 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-3x^{2}+9x\right)+\left(-5x+15\right)
-3x^{2}+4x+15 എന്നത് \left(-3x^{2}+9x\right)+\left(-5x+15\right) എന്നായി തിരുത്തിയെഴുതുക.
3x\left(-x+3\right)+5\left(-x+3\right)
ആദ്യ ഗ്രൂപ്പിലെ 3x എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-x+3\right)\left(3x+5\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -x+3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=3 x=-\frac{5}{3}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ -x+3=0, 3x+5=0 എന്നിവ സോൾവ് ചെയ്യുക.
-3x^{2}+4x+15=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 15}}{2\left(-3\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -3 എന്നതും b എന്നതിനായി 4 എന്നതും c എന്നതിനായി 15 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-4±\sqrt{16-4\left(-3\right)\times 15}}{2\left(-3\right)}
4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-4±\sqrt{16+12\times 15}}{2\left(-3\right)}
-4, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{16+180}}{2\left(-3\right)}
12, 15 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{196}}{2\left(-3\right)}
16, 180 എന്നതിൽ ചേർക്കുക.
x=\frac{-4±14}{2\left(-3\right)}
196 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-4±14}{-6}
2, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{10}{-6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-4±14}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4, 14 എന്നതിൽ ചേർക്കുക.
x=-\frac{5}{3}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{10}{-6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{18}{-6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-4±14}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4 എന്നതിൽ നിന്ന് 14 വ്യവകലനം ചെയ്യുക.
x=3
-6 കൊണ്ട് -18 എന്നതിനെ ഹരിക്കുക.
x=-\frac{5}{3} x=3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
-3x^{2}+4x+15=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
-3x^{2}+4x+15-15=-15
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 15 കുറയ്ക്കുക.
-3x^{2}+4x=-15
അതിൽ നിന്നുതന്നെ 15 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{-3x^{2}+4x}{-3}=-\frac{15}{-3}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{4}{-3}x=-\frac{15}{-3}
-3 കൊണ്ട് ഹരിക്കുന്നത്, -3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{4}{3}x=-\frac{15}{-3}
-3 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{4}{3}x=5
-3 കൊണ്ട് -15 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=5+\left(-\frac{2}{3}\right)^{2}
-\frac{2}{3} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{4}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{2}{3} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{4}{3}x+\frac{4}{9}=5+\frac{4}{9}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{2}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{49}{9}
5, \frac{4}{9} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{2}{3}\right)^{2}=\frac{49}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{2}{3}=\frac{7}{3} x-\frac{2}{3}=-\frac{7}{3}
ലഘൂകരിക്കുക.
x=3 x=-\frac{5}{3}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{2}{3} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}