പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4\left(p-5p^{2}\right)
4 ഘടക ലഘൂകരണം ചെയ്യുക.
p\left(1-5p\right)
p-5p^{2} പരിഗണിക്കുക. p ഘടക ലഘൂകരണം ചെയ്യുക.
4p\left(-5p+1\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
-20p^{2}+4p=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
p=\frac{-4±\sqrt{4^{2}}}{2\left(-20\right)}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
p=\frac{-4±4}{2\left(-20\right)}
4^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
p=\frac{-4±4}{-40}
2, -20 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
p=\frac{0}{-40}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, p=\frac{-4±4}{-40} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4, 4 എന്നതിൽ ചേർക്കുക.
p=0
-40 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
p=-\frac{8}{-40}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, p=\frac{-4±4}{-40} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
p=\frac{1}{5}
8 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-8}{-40} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
-20p^{2}+4p=-20p\left(p-\frac{1}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 0 എന്നതും, x_{2}-നായി \frac{1}{5} എന്നതും പകരം വയ്‌ക്കുക.
-20p^{2}+4p=-20p\times \frac{-5p+1}{-5}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് p എന്നതിൽ നിന്ന് \frac{1}{5} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
-20p^{2}+4p=4p\left(-5p+1\right)
-20, -5 എന്നിവയിലെ 5 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.