x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{5}{7}\approx 0.714285714
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
49x^{2}-70x+25=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 49\times 25}}{2\times 49}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 49 എന്നതും b എന്നതിനായി -70 എന്നതും c എന്നതിനായി 25 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 49\times 25}}{2\times 49}
-70 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-70\right)±\sqrt{4900-196\times 25}}{2\times 49}
-4, 49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-70\right)±\sqrt{4900-4900}}{2\times 49}
-196, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-70\right)±\sqrt{0}}{2\times 49}
4900, -4900 എന്നതിൽ ചേർക്കുക.
x=-\frac{-70}{2\times 49}
0 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{70}{2\times 49}
-70 എന്നതിന്റെ വിപരീതം 70 ആണ്.
x=\frac{70}{98}
2, 49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{5}{7}
14 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{70}{98} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
49x^{2}-70x+25=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
49x^{2}-70x+25-25=-25
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 25 കുറയ്ക്കുക.
49x^{2}-70x=-25
അതിൽ നിന്നുതന്നെ 25 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{49x^{2}-70x}{49}=-\frac{25}{49}
ഇരുവശങ്ങളെയും 49 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{70}{49}\right)x=-\frac{25}{49}
49 കൊണ്ട് ഹരിക്കുന്നത്, 49 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{10}{7}x=-\frac{25}{49}
7 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-70}{49} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}-\frac{10}{7}x+\left(-\frac{5}{7}\right)^{2}=-\frac{25}{49}+\left(-\frac{5}{7}\right)^{2}
-\frac{5}{7} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{10}{7}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{5}{7} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{10}{7}x+\frac{25}{49}=\frac{-25+25}{49}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{5}{7} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{10}{7}x+\frac{25}{49}=0
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{25}{49} എന്നത് \frac{25}{49} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{5}{7}\right)^{2}=0
x^{2}-\frac{10}{7}x+\frac{25}{49} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{5}{7}\right)^{2}}=\sqrt{0}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{5}{7}=0 x-\frac{5}{7}=0
ലഘൂകരിക്കുക.
x=\frac{5}{7} x=\frac{5}{7}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{5}{7} ചേർക്കുക.
x=\frac{5}{7}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു. പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}