പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=112 ab=49\times 64=3136
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 49v^{2}+av+bv+64 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,3136 2,1568 4,784 7,448 8,392 14,224 16,196 28,112 32,98 49,64 56,56
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 3136 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+3136=3137 2+1568=1570 4+784=788 7+448=455 8+392=400 14+224=238 16+196=212 28+112=140 32+98=130 49+64=113 56+56=112
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=56 b=56
സൊല്യൂഷൻ എന്നത് 112 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(49v^{2}+56v\right)+\left(56v+64\right)
49v^{2}+112v+64 എന്നത് \left(49v^{2}+56v\right)+\left(56v+64\right) എന്നായി തിരുത്തിയെഴുതുക.
7v\left(7v+8\right)+8\left(7v+8\right)
ആദ്യ ഗ്രൂപ്പിലെ 7v എന്നതും രണ്ടാമത്തേതിലെ 8 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(7v+8\right)\left(7v+8\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 7v+8 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(7v+8\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
factor(49v^{2}+112v+64)
ഈ ട്രിനോമിനലിന് ഒരു ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ രൂപമാണുള്ളത്, ഒരുപക്ഷേ, ഒരു പൊതു ഘടകം കൊണ്ട് ഗുണിക്കാനായേക്കും. മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങൾ കണ്ടെത്തി ട്രിനോമിനൽ സ്ക്വയറുകൾ ഘടകമാക്കാൻ കഴിഞ്ഞേക്കും.
gcf(49,112,64)=1
കോഎഫിഷ്യന്‍റുകളുടെ ഉത്തമ സാധാരണ ഘടകം കണ്ടെത്തുക.
\sqrt{49v^{2}}=7v
49v^{2} എന്ന ലീഡിംഗ് പദത്തിന്‍റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\sqrt{64}=8
64 എന്ന ട്രെയ്‌ലിംഗ് പദത്തിന്‍റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\left(7v+8\right)^{2}
ട്രിനോമിനൽ സ്ക്വയർ എന്നത് ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ മധ്യ പദ ചിഹ്നം നിർണ്ണയിക്കുന്ന ചിഹ്നം ഉപയോഗിച്ചുള്ള മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങളുടെ ആകെത്തുകയോ വ്യത്യാസമോ ആയ ബിനോമിനലിന്‍റെ സ്‌ക്വയർ ആണ്.
49v^{2}+112v+64=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
v=\frac{-112±\sqrt{112^{2}-4\times 49\times 64}}{2\times 49}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
v=\frac{-112±\sqrt{12544-4\times 49\times 64}}{2\times 49}
112 സ്ക്വയർ ചെയ്യുക.
v=\frac{-112±\sqrt{12544-196\times 64}}{2\times 49}
-4, 49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
v=\frac{-112±\sqrt{12544-12544}}{2\times 49}
-196, 64 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
v=\frac{-112±\sqrt{0}}{2\times 49}
12544, -12544 എന്നതിൽ ചേർക്കുക.
v=\frac{-112±0}{2\times 49}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
v=\frac{-112±0}{98}
2, 49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
49v^{2}+112v+64=49\left(v-\left(-\frac{8}{7}\right)\right)\left(v-\left(-\frac{8}{7}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -\frac{8}{7} എന്നതും, x_{2}-നായി -\frac{8}{7} എന്നതും പകരം വയ്‌ക്കുക.
49v^{2}+112v+64=49\left(v+\frac{8}{7}\right)\left(v+\frac{8}{7}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
49v^{2}+112v+64=49\times \frac{7v+8}{7}\left(v+\frac{8}{7}\right)
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{8}{7} എന്നത് v എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
49v^{2}+112v+64=49\times \frac{7v+8}{7}\times \frac{7v+8}{7}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{8}{7} എന്നത് v എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
49v^{2}+112v+64=49\times \frac{\left(7v+8\right)\left(7v+8\right)}{7\times 7}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{7v+8}{7}, \frac{7v+8}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
49v^{2}+112v+64=49\times \frac{\left(7v+8\right)\left(7v+8\right)}{49}
7, 7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
49v^{2}+112v+64=\left(7v+8\right)\left(7v+8\right)
49, 49 എന്നിവയിലെ 49 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.