പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5\left(9s^{2}-24s+16\right)
5 ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3s-4\right)^{2}
9s^{2}-24s+16 പരിഗണിക്കുക. a=3s, b=4 എന്നീ സാഹചര്യങ്ങളിൽ പെർഫക്‌റ്റ് സ്‌ക്വയർ സൂത്രവാക്യമായ a^{2}-2ab+b^{2}=\left(a-b\right)^{2} ഉപയോഗിക്കുക.
5\left(3s-4\right)^{2}
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
factor(45s^{2}-120s+80)
ഈ ട്രിനോമിനലിന് ഒരു ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ രൂപമാണുള്ളത്, ഒരുപക്ഷേ, ഒരു പൊതു ഘടകം കൊണ്ട് ഗുണിക്കാനായേക്കും. മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങൾ കണ്ടെത്തി ട്രിനോമിനൽ സ്ക്വയറുകൾ ഘടകമാക്കാൻ കഴിഞ്ഞേക്കും.
gcf(45,-120,80)=5
കോഎഫിഷ്യന്‍റുകളുടെ ഉത്തമ സാധാരണ ഘടകം കണ്ടെത്തുക.
5\left(9s^{2}-24s+16\right)
5 ഘടക ലഘൂകരണം ചെയ്യുക.
\sqrt{9s^{2}}=3s
9s^{2} എന്ന ലീഡിംഗ് പദത്തിന്‍റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\sqrt{16}=4
16 എന്ന ട്രെയ്‌ലിംഗ് പദത്തിന്‍റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
5\left(3s-4\right)^{2}
ട്രിനോമിനൽ സ്ക്വയർ എന്നത് ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ മധ്യ പദ ചിഹ്നം നിർണ്ണയിക്കുന്ന ചിഹ്നം ഉപയോഗിച്ചുള്ള മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങളുടെ ആകെത്തുകയോ വ്യത്യാസമോ ആയ ബിനോമിനലിന്‍റെ സ്‌ക്വയർ ആണ്.
45s^{2}-120s+80=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
s=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 45\times 80}}{2\times 45}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
s=\frac{-\left(-120\right)±\sqrt{14400-4\times 45\times 80}}{2\times 45}
-120 സ്ക്വയർ ചെയ്യുക.
s=\frac{-\left(-120\right)±\sqrt{14400-180\times 80}}{2\times 45}
-4, 45 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
s=\frac{-\left(-120\right)±\sqrt{14400-14400}}{2\times 45}
-180, 80 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
s=\frac{-\left(-120\right)±\sqrt{0}}{2\times 45}
14400, -14400 എന്നതിൽ ചേർക്കുക.
s=\frac{-\left(-120\right)±0}{2\times 45}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
s=\frac{120±0}{2\times 45}
-120 എന്നതിന്‍റെ വിപരീതം 120 ആണ്.
s=\frac{120±0}{90}
2, 45 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
45s^{2}-120s+80=45\left(s-\frac{4}{3}\right)\left(s-\frac{4}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{4}{3} എന്നതും, x_{2}-നായി \frac{4}{3} എന്നതും പകരം വയ്‌ക്കുക.
45s^{2}-120s+80=45\times \frac{3s-4}{3}\left(s-\frac{4}{3}\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് s എന്നതിൽ നിന്ന് \frac{4}{3} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
45s^{2}-120s+80=45\times \frac{3s-4}{3}\times \frac{3s-4}{3}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് s എന്നതിൽ നിന്ന് \frac{4}{3} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
45s^{2}-120s+80=45\times \frac{\left(3s-4\right)\left(3s-4\right)}{3\times 3}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{3s-4}{3}, \frac{3s-4}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
45s^{2}-120s+80=45\times \frac{\left(3s-4\right)\left(3s-4\right)}{9}
3, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
45s^{2}-120s+80=5\left(3s-4\right)\left(3s-4\right)
45, 9 എന്നിവയിലെ 9 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.