പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x^{2}-8x+12-9=0
ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക.
4x^{2}-8x+3=0
3 നേടാൻ 12 എന്നതിൽ നിന്ന് 9 കുറയ്ക്കുക.
a+b=-8 ab=4\times 3=12
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 4x^{2}+ax+bx+3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-12 -2,-6 -3,-4
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-12=-13 -2-6=-8 -3-4=-7
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=-2
സൊല്യൂഷൻ എന്നത് -8 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(4x^{2}-6x\right)+\left(-2x+3\right)
4x^{2}-8x+3 എന്നത് \left(4x^{2}-6x\right)+\left(-2x+3\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(2x-3\right)-\left(2x-3\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2x-3\right)\left(2x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2x-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{3}{2} x=\frac{1}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 2x-3=0, 2x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
4x^{2}-8x+12=9
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
4x^{2}-8x+12-9=9-9
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക.
4x^{2}-8x+12-9=0
അതിൽ നിന്നുതന്നെ 9 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
4x^{2}-8x+3=0
12 എന്നതിൽ നിന്ന് 9 വ്യവകലനം ചെയ്യുക.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി -8 എന്നതും c എന്നതിനായി 3 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
-8 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
-16, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
64, -48 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-8\right)±4}{2\times 4}
16 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{8±4}{2\times 4}
-8 എന്നതിന്‍റെ വിപരീതം 8 ആണ്.
x=\frac{8±4}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{12}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{8±4}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 8, 4 എന്നതിൽ ചേർക്കുക.
x=\frac{3}{2}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{12}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{4}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{8±4}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 8 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{2}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{3}{2} x=\frac{1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
4x^{2}-8x+12=9
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
4x^{2}-8x+12-12=9-12
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 12 കുറയ്ക്കുക.
4x^{2}-8x=9-12
അതിൽ നിന്നുതന്നെ 12 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
4x^{2}-8x=-3
9 എന്നതിൽ നിന്ന് 12 വ്യവകലനം ചെയ്യുക.
\frac{4x^{2}-8x}{4}=-\frac{3}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{3}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-2x=-\frac{3}{4}
4 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
x^{2}-2x+1=-\frac{3}{4}+1
-1 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -1 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-2x+1=\frac{1}{4}
-\frac{3}{4}, 1 എന്നതിൽ ചേർക്കുക.
\left(x-1\right)^{2}=\frac{1}{4}
x^{2}-2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-1=\frac{1}{2} x-1=-\frac{1}{2}
ലഘൂകരിക്കുക.
x=\frac{3}{2} x=\frac{1}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 1 ചേർക്കുക.