പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-16 ab=4\times 15=60
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 4x^{2}+ax+bx+15 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 60 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-10 b=-6
സൊല്യൂഷൻ എന്നത് -16 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(4x^{2}-10x\right)+\left(-6x+15\right)
4x^{2}-16x+15 എന്നത് \left(4x^{2}-10x\right)+\left(-6x+15\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(2x-5\right)-3\left(2x-5\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ -3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2x-5\right)\left(2x-3\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2x-5 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
4x^{2}-16x+15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 15}}{2\times 4}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 15}}{2\times 4}
-16 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-16\right)±\sqrt{256-16\times 15}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-16\right)±\sqrt{256-240}}{2\times 4}
-16, 15 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-16\right)±\sqrt{16}}{2\times 4}
256, -240 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-16\right)±4}{2\times 4}
16 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{16±4}{2\times 4}
-16 എന്നതിന്‍റെ വിപരീതം 16 ആണ്.
x=\frac{16±4}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{20}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{16±4}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 16, 4 എന്നതിൽ ചേർക്കുക.
x=\frac{5}{2}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{20}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{12}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{16±4}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 16 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
x=\frac{3}{2}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{12}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
4x^{2}-16x+15=4\left(x-\frac{5}{2}\right)\left(x-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{5}{2} എന്നതും, x_{2}-നായി \frac{3}{2} എന്നതും പകരം വയ്‌ക്കുക.
4x^{2}-16x+15=4\times \frac{2x-5}{2}\left(x-\frac{3}{2}\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{5}{2} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
4x^{2}-16x+15=4\times \frac{2x-5}{2}\times \frac{2x-3}{2}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{3}{2} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
4x^{2}-16x+15=4\times \frac{\left(2x-5\right)\left(2x-3\right)}{2\times 2}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{2x-5}{2}, \frac{2x-3}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
4x^{2}-16x+15=4\times \frac{\left(2x-5\right)\left(2x-3\right)}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
4x^{2}-16x+15=\left(2x-5\right)\left(2x-3\right)
4, 4 എന്നിവയിലെ 4 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.