പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x^{2}+8+5x=0
5x ഇരു വശങ്ങളിലും ചേർക്കുക.
4x^{2}+5x+8=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-5±\sqrt{5^{2}-4\times 4\times 8}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 5 എന്നതും c എന്നതിനായി 8 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-5±\sqrt{25-4\times 4\times 8}}{2\times 4}
5 സ്ക്വയർ ചെയ്യുക.
x=\frac{-5±\sqrt{25-16\times 8}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5±\sqrt{25-128}}{2\times 4}
-16, 8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5±\sqrt{-103}}{2\times 4}
25, -128 എന്നതിൽ ചേർക്കുക.
x=\frac{-5±\sqrt{103}i}{2\times 4}
-103 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-5±\sqrt{103}i}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5+\sqrt{103}i}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-5±\sqrt{103}i}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5, i\sqrt{103} എന്നതിൽ ചേർക്കുക.
x=\frac{-\sqrt{103}i-5}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-5±\sqrt{103}i}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5 എന്നതിൽ നിന്ന് i\sqrt{103} വ്യവകലനം ചെയ്യുക.
x=\frac{-5+\sqrt{103}i}{8} x=\frac{-\sqrt{103}i-5}{8}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
4x^{2}+8+5x=0
5x ഇരു വശങ്ങളിലും ചേർക്കുക.
4x^{2}+5x=-8
ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
\frac{4x^{2}+5x}{4}=-\frac{8}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{5}{4}x=-\frac{8}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{5}{4}x=-2
4 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=-2+\left(\frac{5}{8}\right)^{2}
\frac{5}{8} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{5}{4}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{5}{8} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-2+\frac{25}{64}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{5}{8} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{103}{64}
-2, \frac{25}{64} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{5}{8}\right)^{2}=-\frac{103}{64}
x^{2}+\frac{5}{4}x+\frac{25}{64} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{-\frac{103}{64}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{5}{8}=\frac{\sqrt{103}i}{8} x+\frac{5}{8}=-\frac{\sqrt{103}i}{8}
ലഘൂകരിക്കുക.
x=\frac{-5+\sqrt{103}i}{8} x=\frac{-\sqrt{103}i-5}{8}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{8} കുറയ്ക്കുക.