പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}+7x+10=0
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
a+b=7 ab=1\times 10=10
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+10 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,10 2,5
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 10 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+10=11 2+5=7
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=2 b=5
സൊല്യൂഷൻ എന്നത് 7 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}+2x\right)+\left(5x+10\right)
x^{2}+7x+10 എന്നത് \left(x^{2}+2x\right)+\left(5x+10\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x+2\right)+5\left(x+2\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x+2\right)\left(x+5\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x+2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=-2 x=-5
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x+2=0, x+5=0 എന്നിവ സോൾവ് ചെയ്യുക.
4x^{2}+28x+40=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-28±\sqrt{28^{2}-4\times 4\times 40}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 28 എന്നതും c എന്നതിനായി 40 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-28±\sqrt{784-4\times 4\times 40}}{2\times 4}
28 സ്ക്വയർ ചെയ്യുക.
x=\frac{-28±\sqrt{784-16\times 40}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-28±\sqrt{784-640}}{2\times 4}
-16, 40 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-28±\sqrt{144}}{2\times 4}
784, -640 എന്നതിൽ ചേർക്കുക.
x=\frac{-28±12}{2\times 4}
144 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-28±12}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{16}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-28±12}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -28, 12 എന്നതിൽ ചേർക്കുക.
x=-2
8 കൊണ്ട് -16 എന്നതിനെ ഹരിക്കുക.
x=-\frac{40}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-28±12}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -28 എന്നതിൽ നിന്ന് 12 വ്യവകലനം ചെയ്യുക.
x=-5
8 കൊണ്ട് -40 എന്നതിനെ ഹരിക്കുക.
x=-2 x=-5
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
4x^{2}+28x+40=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
4x^{2}+28x+40-40=-40
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 40 കുറയ്ക്കുക.
4x^{2}+28x=-40
അതിൽ നിന്നുതന്നെ 40 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{4x^{2}+28x}{4}=-\frac{40}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{28}{4}x=-\frac{40}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+7x=-\frac{40}{4}
4 കൊണ്ട് 28 എന്നതിനെ ഹരിക്കുക.
x^{2}+7x=-10
4 കൊണ്ട് -40 എന്നതിനെ ഹരിക്കുക.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-10+\left(\frac{7}{2}\right)^{2}
\frac{7}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 7-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{7}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+7x+\frac{49}{4}=-10+\frac{49}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{7}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+7x+\frac{49}{4}=\frac{9}{4}
-10, \frac{49}{4} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{7}{2}\right)^{2}=\frac{9}{4}
x^{2}+7x+\frac{49}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{7}{2}=\frac{3}{2} x+\frac{7}{2}=-\frac{3}{2}
ലഘൂകരിക്കുക.
x=-2 x=-5
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{7}{2} കുറയ്ക്കുക.