പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4x^{2}+12x+19=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 19}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 12 എന്നതും c എന്നതിനായി 19 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-12±\sqrt{144-4\times 4\times 19}}{2\times 4}
12 സ്ക്വയർ ചെയ്യുക.
x=\frac{-12±\sqrt{144-16\times 19}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12±\sqrt{144-304}}{2\times 4}
-16, 19 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12±\sqrt{-160}}{2\times 4}
144, -304 എന്നതിൽ ചേർക്കുക.
x=\frac{-12±4\sqrt{10}i}{2\times 4}
-160 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-12±4\sqrt{10}i}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12+4\sqrt{10}i}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-12±4\sqrt{10}i}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -12, 4i\sqrt{10} എന്നതിൽ ചേർക്കുക.
x=\frac{-3+\sqrt{10}i}{2}
8 കൊണ്ട് -12+4i\sqrt{10} എന്നതിനെ ഹരിക്കുക.
x=\frac{-4\sqrt{10}i-12}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-12±4\sqrt{10}i}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -12 എന്നതിൽ നിന്ന് 4i\sqrt{10} വ്യവകലനം ചെയ്യുക.
x=\frac{-\sqrt{10}i-3}{2}
8 കൊണ്ട് -12-4i\sqrt{10} എന്നതിനെ ഹരിക്കുക.
x=\frac{-3+\sqrt{10}i}{2} x=\frac{-\sqrt{10}i-3}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
4x^{2}+12x+19=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
4x^{2}+12x+19-19=-19
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 19 കുറയ്ക്കുക.
4x^{2}+12x=-19
അതിൽ നിന്നുതന്നെ 19 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{4x^{2}+12x}{4}=-\frac{19}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{12}{4}x=-\frac{19}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+3x=-\frac{19}{4}
4 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{19}{4}+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+3x+\frac{9}{4}=\frac{-19+9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+3x+\frac{9}{4}=-\frac{5}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{19}{4} എന്നത് \frac{9}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{3}{2}\right)^{2}=-\frac{5}{2}
x^{2}+3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{5}{2}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{3}{2}=\frac{\sqrt{10}i}{2} x+\frac{3}{2}=-\frac{\sqrt{10}i}{2}
ലഘൂകരിക്കുക.
x=\frac{-3+\sqrt{10}i}{2} x=\frac{-\sqrt{10}i-3}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3}{2} കുറയ്ക്കുക.