പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2\left(2q^{2}-17q+35\right)
2 ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=-17 ab=2\times 35=70
2q^{2}-17q+35 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 2q^{2}+aq+bq+35 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-70 -2,-35 -5,-14 -7,-10
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 70 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-70=-71 -2-35=-37 -5-14=-19 -7-10=-17
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-10 b=-7
സൊല്യൂഷൻ എന്നത് -17 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(2q^{2}-10q\right)+\left(-7q+35\right)
2q^{2}-17q+35 എന്നത് \left(2q^{2}-10q\right)+\left(-7q+35\right) എന്നായി തിരുത്തിയെഴുതുക.
2q\left(q-5\right)-7\left(q-5\right)
ആദ്യ ഗ്രൂപ്പിലെ 2q എന്നതും രണ്ടാമത്തേതിലെ -7 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(q-5\right)\left(2q-7\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് q-5 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
2\left(q-5\right)\left(2q-7\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
4q^{2}-34q+70=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
q=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 4\times 70}}{2\times 4}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
q=\frac{-\left(-34\right)±\sqrt{1156-4\times 4\times 70}}{2\times 4}
-34 സ്ക്വയർ ചെയ്യുക.
q=\frac{-\left(-34\right)±\sqrt{1156-16\times 70}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
q=\frac{-\left(-34\right)±\sqrt{1156-1120}}{2\times 4}
-16, 70 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
q=\frac{-\left(-34\right)±\sqrt{36}}{2\times 4}
1156, -1120 എന്നതിൽ ചേർക്കുക.
q=\frac{-\left(-34\right)±6}{2\times 4}
36 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
q=\frac{34±6}{2\times 4}
-34 എന്നതിന്‍റെ വിപരീതം 34 ആണ്.
q=\frac{34±6}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
q=\frac{40}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, q=\frac{34±6}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 34, 6 എന്നതിൽ ചേർക്കുക.
q=5
8 കൊണ്ട് 40 എന്നതിനെ ഹരിക്കുക.
q=\frac{28}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, q=\frac{34±6}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 34 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
q=\frac{7}{2}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{28}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
4q^{2}-34q+70=4\left(q-5\right)\left(q-\frac{7}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 5 എന്നതും, x_{2}-നായി \frac{7}{2} എന്നതും പകരം വയ്‌ക്കുക.
4q^{2}-34q+70=4\left(q-5\right)\times \frac{2q-7}{2}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് q എന്നതിൽ നിന്ന് \frac{7}{2} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
4q^{2}-34q+70=2\left(q-5\right)\left(2q-7\right)
4, 2 എന്നിവയിലെ 2 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.