പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
p എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-3 ab=4\left(-10\right)=-40
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 4p^{2}+ap+bp-10 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-40 2,-20 4,-10 5,-8
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -40 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-8 b=5
സൊല്യൂഷൻ എന്നത് -3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(4p^{2}-8p\right)+\left(5p-10\right)
4p^{2}-3p-10 എന്നത് \left(4p^{2}-8p\right)+\left(5p-10\right) എന്നായി തിരുത്തിയെഴുതുക.
4p\left(p-2\right)+5\left(p-2\right)
ആദ്യ ഗ്രൂപ്പിലെ 4p എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(p-2\right)\left(4p+5\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് p-2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
p=2 p=-\frac{5}{4}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ p-2=0, 4p+5=0 എന്നിവ സോൾവ് ചെയ്യുക.
4p^{2}-3p-10=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\left(-10\right)}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി -10 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
p=\frac{-\left(-3\right)±\sqrt{9-4\times 4\left(-10\right)}}{2\times 4}
-3 സ്ക്വയർ ചെയ്യുക.
p=\frac{-\left(-3\right)±\sqrt{9-16\left(-10\right)}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
p=\frac{-\left(-3\right)±\sqrt{9+160}}{2\times 4}
-16, -10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
p=\frac{-\left(-3\right)±\sqrt{169}}{2\times 4}
9, 160 എന്നതിൽ ചേർക്കുക.
p=\frac{-\left(-3\right)±13}{2\times 4}
169 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
p=\frac{3±13}{2\times 4}
-3 എന്നതിന്‍റെ വിപരീതം 3 ആണ്.
p=\frac{3±13}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
p=\frac{16}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, p=\frac{3±13}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 13 എന്നതിൽ ചേർക്കുക.
p=2
8 കൊണ്ട് 16 എന്നതിനെ ഹരിക്കുക.
p=-\frac{10}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, p=\frac{3±13}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 13 വ്യവകലനം ചെയ്യുക.
p=-\frac{5}{4}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-10}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
p=2 p=-\frac{5}{4}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
4p^{2}-3p-10=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
4p^{2}-3p-10-\left(-10\right)=-\left(-10\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 10 ചേർക്കുക.
4p^{2}-3p=-\left(-10\right)
അതിൽ നിന്നുതന്നെ -10 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
4p^{2}-3p=10
0 എന്നതിൽ നിന്ന് -10 വ്യവകലനം ചെയ്യുക.
\frac{4p^{2}-3p}{4}=\frac{10}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
p^{2}-\frac{3}{4}p=\frac{10}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
p^{2}-\frac{3}{4}p=\frac{5}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{10}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
p^{2}-\frac{3}{4}p+\left(-\frac{3}{8}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{8}\right)^{2}
-\frac{3}{8} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{3}{4}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{8} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
p^{2}-\frac{3}{4}p+\frac{9}{64}=\frac{5}{2}+\frac{9}{64}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{8} സ്ക്വയർ ചെയ്യുക.
p^{2}-\frac{3}{4}p+\frac{9}{64}=\frac{169}{64}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{5}{2} എന്നത് \frac{9}{64} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(p-\frac{3}{8}\right)^{2}=\frac{169}{64}
p^{2}-\frac{3}{4}p+\frac{9}{64} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(p-\frac{3}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
p-\frac{3}{8}=\frac{13}{8} p-\frac{3}{8}=-\frac{13}{8}
ലഘൂകരിക്കുക.
p=2 p=-\frac{5}{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{8} ചേർക്കുക.