n എന്നതിനായി സോൾവ് ചെയ്യുക
n=-1
n = \frac{11}{4} = 2\frac{3}{4} = 2.75
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
4n^{2}-7n-11=0
ഇരുവശങ്ങളിൽ നിന്നും 11 കുറയ്ക്കുക.
a+b=-7 ab=4\left(-11\right)=-44
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 4n^{2}+an+bn-11 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-44 2,-22 4,-11
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -44 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-44=-43 2-22=-20 4-11=-7
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-11 b=4
സൊല്യൂഷൻ എന്നത് -7 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(4n^{2}-11n\right)+\left(4n-11\right)
4n^{2}-7n-11 എന്നത് \left(4n^{2}-11n\right)+\left(4n-11\right) എന്നായി തിരുത്തിയെഴുതുക.
n\left(4n-11\right)+4n-11
4n^{2}-11n എന്നതിൽ n ഘടക ലഘൂകരണം ചെയ്യുക.
\left(4n-11\right)\left(n+1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 4n-11 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
n=\frac{11}{4} n=-1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 4n-11=0, n+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
4n^{2}-7n=11
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
4n^{2}-7n-11=11-11
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 11 കുറയ്ക്കുക.
4n^{2}-7n-11=0
അതിൽ നിന്നുതന്നെ 11 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
n=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4\left(-11\right)}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി -7 എന്നതും c എന്നതിനായി -11 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
n=\frac{-\left(-7\right)±\sqrt{49-4\times 4\left(-11\right)}}{2\times 4}
-7 സ്ക്വയർ ചെയ്യുക.
n=\frac{-\left(-7\right)±\sqrt{49-16\left(-11\right)}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
n=\frac{-\left(-7\right)±\sqrt{49+176}}{2\times 4}
-16, -11 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
n=\frac{-\left(-7\right)±\sqrt{225}}{2\times 4}
49, 176 എന്നതിൽ ചേർക്കുക.
n=\frac{-\left(-7\right)±15}{2\times 4}
225 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
n=\frac{7±15}{2\times 4}
-7 എന്നതിന്റെ വിപരീതം 7 ആണ്.
n=\frac{7±15}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
n=\frac{22}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, n=\frac{7±15}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7, 15 എന്നതിൽ ചേർക്കുക.
n=\frac{11}{4}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{22}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
n=-\frac{8}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, n=\frac{7±15}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7 എന്നതിൽ നിന്ന് 15 വ്യവകലനം ചെയ്യുക.
n=-1
8 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
n=\frac{11}{4} n=-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
4n^{2}-7n=11
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{4n^{2}-7n}{4}=\frac{11}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
n^{2}-\frac{7}{4}n=\frac{11}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
n^{2}-\frac{7}{4}n+\left(-\frac{7}{8}\right)^{2}=\frac{11}{4}+\left(-\frac{7}{8}\right)^{2}
-\frac{7}{8} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{7}{4}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{7}{8} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
n^{2}-\frac{7}{4}n+\frac{49}{64}=\frac{11}{4}+\frac{49}{64}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{7}{8} സ്ക്വയർ ചെയ്യുക.
n^{2}-\frac{7}{4}n+\frac{49}{64}=\frac{225}{64}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{11}{4} എന്നത് \frac{49}{64} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(n-\frac{7}{8}\right)^{2}=\frac{225}{64}
n^{2}-\frac{7}{4}n+\frac{49}{64} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(n-\frac{7}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
n-\frac{7}{8}=\frac{15}{8} n-\frac{7}{8}=-\frac{15}{8}
ലഘൂകരിക്കുക.
n=\frac{11}{4} n=-1
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{7}{8} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}