m എന്നതിനായി സോൾവ് ചെയ്യുക
m=\frac{\sqrt{13}-1}{4}\approx 0.651387819
m=\frac{-\sqrt{13}-1}{4}\approx -1.151387819
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
4m^{2}+2m=3
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
4m^{2}+2m-3=3-3
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
4m^{2}+2m-3=0
അതിൽ നിന്നുതന്നെ 3 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
m=\frac{-2±\sqrt{2^{2}-4\times 4\left(-3\right)}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി -3 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
m=\frac{-2±\sqrt{4-4\times 4\left(-3\right)}}{2\times 4}
2 സ്ക്വയർ ചെയ്യുക.
m=\frac{-2±\sqrt{4-16\left(-3\right)}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
m=\frac{-2±\sqrt{4+48}}{2\times 4}
-16, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
m=\frac{-2±\sqrt{52}}{2\times 4}
4, 48 എന്നതിൽ ചേർക്കുക.
m=\frac{-2±2\sqrt{13}}{2\times 4}
52 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
m=\frac{-2±2\sqrt{13}}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
m=\frac{2\sqrt{13}-2}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, m=\frac{-2±2\sqrt{13}}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2, 2\sqrt{13} എന്നതിൽ ചേർക്കുക.
m=\frac{\sqrt{13}-1}{4}
8 കൊണ്ട് -2+2\sqrt{13} എന്നതിനെ ഹരിക്കുക.
m=\frac{-2\sqrt{13}-2}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, m=\frac{-2±2\sqrt{13}}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2 എന്നതിൽ നിന്ന് 2\sqrt{13} വ്യവകലനം ചെയ്യുക.
m=\frac{-\sqrt{13}-1}{4}
8 കൊണ്ട് -2-2\sqrt{13} എന്നതിനെ ഹരിക്കുക.
m=\frac{\sqrt{13}-1}{4} m=\frac{-\sqrt{13}-1}{4}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
4m^{2}+2m=3
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{4m^{2}+2m}{4}=\frac{3}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
m^{2}+\frac{2}{4}m=\frac{3}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
m^{2}+\frac{1}{2}m=\frac{3}{4}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
m^{2}+\frac{1}{2}m+\left(\frac{1}{4}\right)^{2}=\frac{3}{4}+\left(\frac{1}{4}\right)^{2}
\frac{1}{4} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{1}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{1}{4} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
m^{2}+\frac{1}{2}m+\frac{1}{16}=\frac{3}{4}+\frac{1}{16}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{1}{4} സ്ക്വയർ ചെയ്യുക.
m^{2}+\frac{1}{2}m+\frac{1}{16}=\frac{13}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{3}{4} എന്നത് \frac{1}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(m+\frac{1}{4}\right)^{2}=\frac{13}{16}
m^{2}+\frac{1}{2}m+\frac{1}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(m+\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{16}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
m+\frac{1}{4}=\frac{\sqrt{13}}{4} m+\frac{1}{4}=-\frac{\sqrt{13}}{4}
ലഘൂകരിക്കുക.
m=\frac{\sqrt{13}-1}{4} m=\frac{-\sqrt{13}-1}{4}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{4} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}