പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

4\left(k^{2}-2k\right)
4 ഘടക ലഘൂകരണം ചെയ്യുക.
k\left(k-2\right)
k^{2}-2k പരിഗണിക്കുക. k ഘടക ലഘൂകരണം ചെയ്യുക.
4k\left(k-2\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
4k^{2}-8k=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
k=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 4}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
k=\frac{-\left(-8\right)±8}{2\times 4}
\left(-8\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
k=\frac{8±8}{2\times 4}
-8 എന്നതിന്‍റെ വിപരീതം 8 ആണ്.
k=\frac{8±8}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
k=\frac{16}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, k=\frac{8±8}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 8, 8 എന്നതിൽ ചേർക്കുക.
k=2
8 കൊണ്ട് 16 എന്നതിനെ ഹരിക്കുക.
k=\frac{0}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, k=\frac{8±8}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 8 എന്നതിൽ നിന്ന് 8 വ്യവകലനം ചെയ്യുക.
k=0
8 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
4k^{2}-8k=4\left(k-2\right)k
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 2 എന്നതും, x_{2}-നായി 0 എന്നതും പകരം വയ്‌ക്കുക.