x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-\frac{9}{13}\approx -0.692307692
x=\frac{1}{3}\approx 0.333333333
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=14 ab=39\left(-9\right)=-351
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 39x^{2}+ax+bx-9 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,351 -3,117 -9,39 -13,27
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -351 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+351=350 -3+117=114 -9+39=30 -13+27=14
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-13 b=27
സൊല്യൂഷൻ എന്നത് 14 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(39x^{2}-13x\right)+\left(27x-9\right)
39x^{2}+14x-9 എന്നത് \left(39x^{2}-13x\right)+\left(27x-9\right) എന്നായി തിരുത്തിയെഴുതുക.
13x\left(3x-1\right)+9\left(3x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ 13x എന്നതും രണ്ടാമത്തേതിലെ 9 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3x-1\right)\left(13x+9\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{1}{3} x=-\frac{9}{13}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 3x-1=0, 13x+9=0 എന്നിവ സോൾവ് ചെയ്യുക.
39x^{2}+14x-9=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-14±\sqrt{14^{2}-4\times 39\left(-9\right)}}{2\times 39}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 39 എന്നതും b എന്നതിനായി 14 എന്നതും c എന്നതിനായി -9 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-14±\sqrt{196-4\times 39\left(-9\right)}}{2\times 39}
14 സ്ക്വയർ ചെയ്യുക.
x=\frac{-14±\sqrt{196-156\left(-9\right)}}{2\times 39}
-4, 39 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-14±\sqrt{196+1404}}{2\times 39}
-156, -9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-14±\sqrt{1600}}{2\times 39}
196, 1404 എന്നതിൽ ചേർക്കുക.
x=\frac{-14±40}{2\times 39}
1600 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-14±40}{78}
2, 39 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{26}{78}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-14±40}{78} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14, 40 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{3}
26 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{26}{78} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{54}{78}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-14±40}{78} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14 എന്നതിൽ നിന്ന് 40 വ്യവകലനം ചെയ്യുക.
x=-\frac{9}{13}
6 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-54}{78} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=\frac{1}{3} x=-\frac{9}{13}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
39x^{2}+14x-9=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
39x^{2}+14x-9-\left(-9\right)=-\left(-9\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 9 ചേർക്കുക.
39x^{2}+14x=-\left(-9\right)
അതിൽ നിന്നുതന്നെ -9 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
39x^{2}+14x=9
0 എന്നതിൽ നിന്ന് -9 വ്യവകലനം ചെയ്യുക.
\frac{39x^{2}+14x}{39}=\frac{9}{39}
ഇരുവശങ്ങളെയും 39 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{14}{39}x=\frac{9}{39}
39 കൊണ്ട് ഹരിക്കുന്നത്, 39 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{14}{39}x=\frac{3}{13}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{9}{39} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}+\frac{14}{39}x+\left(\frac{7}{39}\right)^{2}=\frac{3}{13}+\left(\frac{7}{39}\right)^{2}
\frac{7}{39} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{14}{39}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{7}{39} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{14}{39}x+\frac{49}{1521}=\frac{3}{13}+\frac{49}{1521}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{7}{39} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{14}{39}x+\frac{49}{1521}=\frac{400}{1521}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{3}{13} എന്നത് \frac{49}{1521} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{7}{39}\right)^{2}=\frac{400}{1521}
x^{2}+\frac{14}{39}x+\frac{49}{1521} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{7}{39}\right)^{2}}=\sqrt{\frac{400}{1521}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{7}{39}=\frac{20}{39} x+\frac{7}{39}=-\frac{20}{39}
ലഘൂകരിക്കുക.
x=\frac{1}{3} x=-\frac{9}{13}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{7}{39} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}