പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

385=4x^{2}+10x+6
2x+3 കൊണ്ട് 2x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+10x+6=385
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
4x^{2}+10x+6-385=0
ഇരുവശങ്ങളിൽ നിന്നും 385 കുറയ്ക്കുക.
4x^{2}+10x-379=0
-379 നേടാൻ 6 എന്നതിൽ നിന്ന് 385 കുറയ്ക്കുക.
x=\frac{-10±\sqrt{10^{2}-4\times 4\left(-379\right)}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 10 എന്നതും c എന്നതിനായി -379 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-10±\sqrt{100-4\times 4\left(-379\right)}}{2\times 4}
10 സ്ക്വയർ ചെയ്യുക.
x=\frac{-10±\sqrt{100-16\left(-379\right)}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-10±\sqrt{100+6064}}{2\times 4}
-16, -379 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-10±\sqrt{6164}}{2\times 4}
100, 6064 എന്നതിൽ ചേർക്കുക.
x=\frac{-10±2\sqrt{1541}}{2\times 4}
6164 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-10±2\sqrt{1541}}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2\sqrt{1541}-10}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-10±2\sqrt{1541}}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -10, 2\sqrt{1541} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{1541}-5}{4}
8 കൊണ്ട് -10+2\sqrt{1541} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{1541}-10}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-10±2\sqrt{1541}}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -10 എന്നതിൽ നിന്ന് 2\sqrt{1541} വ്യവകലനം ചെയ്യുക.
x=\frac{-\sqrt{1541}-5}{4}
8 കൊണ്ട് -10-2\sqrt{1541} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{1541}-5}{4} x=\frac{-\sqrt{1541}-5}{4}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
385=4x^{2}+10x+6
2x+3 കൊണ്ട് 2x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}+10x+6=385
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
4x^{2}+10x=385-6
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
4x^{2}+10x=379
379 നേടാൻ 385 എന്നതിൽ നിന്ന് 6 കുറയ്ക്കുക.
\frac{4x^{2}+10x}{4}=\frac{379}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{10}{4}x=\frac{379}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{5}{2}x=\frac{379}{4}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{10}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{379}{4}+\left(\frac{5}{4}\right)^{2}
\frac{5}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{5}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{5}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{379}{4}+\frac{25}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{5}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{1541}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{379}{4} എന്നത് \frac{25}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{5}{4}\right)^{2}=\frac{1541}{16}
x^{2}+\frac{5}{2}x+\frac{25}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{1541}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{5}{4}=\frac{\sqrt{1541}}{4} x+\frac{5}{4}=-\frac{\sqrt{1541}}{4}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{1541}-5}{4} x=\frac{-\sqrt{1541}-5}{4}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{4} കുറയ്ക്കുക.