ഘടകം
2\left(2a-b^{2}\right)\left(2a+b^{2}\right)\left(4a^{2}+b^{4}\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
32a^{4}-2b^{8}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2\left(16a^{4}-b^{8}\right)
2 ഘടക ലഘൂകരണം ചെയ്യുക.
\left(4a^{2}-b^{4}\right)\left(4a^{2}+b^{4}\right)
16a^{4}-b^{8} പരിഗണിക്കുക. 16a^{4}-b^{8} എന്നത് \left(4a^{2}\right)^{2}-\left(b^{4}\right)^{2} എന്നായി തിരുത്തിയെഴുതുക. ചതുരങ്ങളുടെ വ്യത്യാസം ഇനിപ്പറയുന്ന നിയമം ഉപയോഗിച്ച് ഫക്ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(2a-b^{2}\right)\left(2a+b^{2}\right)
4a^{2}-b^{4} പരിഗണിക്കുക. 4a^{2}-b^{4} എന്നത് \left(2a\right)^{2}-\left(b^{2}\right)^{2} എന്നായി തിരുത്തിയെഴുതുക. ചതുരങ്ങളുടെ വ്യത്യാസം ഇനിപ്പറയുന്ന നിയമം ഉപയോഗിച്ച് ഫക്ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
2\left(2a-b^{2}\right)\left(2a+b^{2}\right)\left(4a^{2}+b^{4}\right)
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}