പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

32x^{2}-80x+48=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 32\times 48}}{2\times 32}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 32 എന്നതും b എന്നതിനായി -80 എന്നതും c എന്നതിനായി 48 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 32\times 48}}{2\times 32}
-80 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-80\right)±\sqrt{6400-128\times 48}}{2\times 32}
-4, 32 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-80\right)±\sqrt{6400-6144}}{2\times 32}
-128, 48 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-80\right)±\sqrt{256}}{2\times 32}
6400, -6144 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-80\right)±16}{2\times 32}
256 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{80±16}{2\times 32}
-80 എന്നതിന്‍റെ വിപരീതം 80 ആണ്.
x=\frac{80±16}{64}
2, 32 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{96}{64}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{80±16}{64} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 80, 16 എന്നതിൽ ചേർക്കുക.
x=\frac{3}{2}
32 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{96}{64} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{64}{64}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{80±16}{64} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 80 എന്നതിൽ നിന്ന് 16 വ്യവകലനം ചെയ്യുക.
x=1
64 കൊണ്ട് 64 എന്നതിനെ ഹരിക്കുക.
x=\frac{3}{2} x=1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
32x^{2}-80x+48=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
32x^{2}-80x+48-48=-48
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 48 കുറയ്ക്കുക.
32x^{2}-80x=-48
അതിൽ നിന്നുതന്നെ 48 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{32x^{2}-80x}{32}=-\frac{48}{32}
ഇരുവശങ്ങളെയും 32 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{80}{32}\right)x=-\frac{48}{32}
32 കൊണ്ട് ഹരിക്കുന്നത്, 32 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{5}{2}x=-\frac{48}{32}
16 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-80}{32} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{5}{2}x=-\frac{3}{2}
16 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-48}{32} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{5}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{5}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{3}{2}+\frac{25}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{5}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{3}{2} എന്നത് \frac{25}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{5}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{5}{2}x+\frac{25}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{5}{4}=\frac{1}{4} x-\frac{5}{4}=-\frac{1}{4}
ലഘൂകരിക്കുക.
x=\frac{3}{2} x=1
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{5}{4} ചേർക്കുക.