x എന്നതിനായി സോൾവ് ചെയ്യുക
x=11
x=4
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(30-\left(x+1\right)-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
\left(30-x-1-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
x+1 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
\left(29-x-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
29 നേടാൻ 30 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\left(29-x-16+x\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
16-x എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
\left(13-x+x\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
13 നേടാൻ 29 എന്നതിൽ നിന്ന് 16 കുറയ്ക്കുക.
13^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
0 നേടാൻ -x, x എന്നിവ യോജിപ്പിക്കുക.
169=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
2-ന്റെ പവറിലേക്ക് 13 കണക്കാക്കി 169 നേടുക.
169=\left(\sqrt{x^{2}+2x+1+\left(16-x\right)^{2}}\right)^{2}
\left(x+1\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
169=\left(\sqrt{x^{2}+2x+1+256-32x+x^{2}}\right)^{2}
\left(16-x\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
169=\left(\sqrt{x^{2}+2x+257-32x+x^{2}}\right)^{2}
257 ലഭ്യമാക്കാൻ 1, 256 എന്നിവ ചേർക്കുക.
169=\left(\sqrt{x^{2}-30x+257+x^{2}}\right)^{2}
-30x നേടാൻ 2x, -32x എന്നിവ യോജിപ്പിക്കുക.
169=\left(\sqrt{2x^{2}-30x+257}\right)^{2}
2x^{2} നേടാൻ x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
169=2x^{2}-30x+257
2-ന്റെ പവറിലേക്ക് \sqrt{2x^{2}-30x+257} കണക്കാക്കി 2x^{2}-30x+257 നേടുക.
2x^{2}-30x+257=169
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
2x^{2}-30x+257-169=0
ഇരുവശങ്ങളിൽ നിന്നും 169 കുറയ്ക്കുക.
2x^{2}-30x+88=0
88 നേടാൻ 257 എന്നതിൽ നിന്ന് 169 കുറയ്ക്കുക.
x^{2}-15x+44=0
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
a+b=-15 ab=1\times 44=44
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+44 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-44 -2,-22 -4,-11
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. 44 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-44=-45 -2-22=-24 -4-11=-15
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-11 b=-4
സൊല്യൂഷൻ എന്നത് -15 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-11x\right)+\left(-4x+44\right)
x^{2}-15x+44 എന്നത് \left(x^{2}-11x\right)+\left(-4x+44\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-11\right)-4\left(x-11\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ -4 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-11\right)\left(x-4\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-11 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=11 x=4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-11=0, x-4=0 എന്നിവ സോൾവ് ചെയ്യുക.
30-\left(11+1\right)-\left(16-11\right)=\sqrt{\left(11+1\right)^{2}+\left(16-11\right)^{2}}
30-\left(x+1\right)-\left(16-x\right)=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}} എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 11 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
13=13
ലഘൂകരിക്കുക. മൂല്യം x=11 സമവാക്യം സാധൂകരിക്കുന്നു.
30-\left(4+1\right)-\left(16-4\right)=\sqrt{\left(4+1\right)^{2}+\left(16-4\right)^{2}}
30-\left(x+1\right)-\left(16-x\right)=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}} എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 4 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
13=13
ലഘൂകരിക്കുക. മൂല്യം x=4 സമവാക്യം സാധൂകരിക്കുന്നു.
x=11 x=4
-\left(x+1\right)-\left(16-x\right)+30=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}-ന്റെ എല്ലാ പരിഹാരങ്ങളും ലിസ്റ്റുചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}