x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{\sqrt{177}}{6}+\frac{3}{2}\approx 3.717355783
x=-\frac{\sqrt{177}}{6}+\frac{3}{2}\approx -0.717355783
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(3x+6\right)\left(x-2\right)=x-4+8x
x+2 കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-12=x-4+8x
x-2 കൊണ്ട് 3x+6 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-12=9x-4
9x നേടാൻ x, 8x എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-12-9x=-4
ഇരുവശങ്ങളിൽ നിന്നും 9x കുറയ്ക്കുക.
3x^{2}-12-9x+4=0
4 ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}-8-9x=0
-8 ലഭ്യമാക്കാൻ -12, 4 എന്നിവ ചേർക്കുക.
3x^{2}-9x-8=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -9 എന്നതും c എന്നതിനായി -8 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\left(-8\right)}}{2\times 3}
-9 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-9\right)±\sqrt{81-12\left(-8\right)}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-9\right)±\sqrt{81+96}}{2\times 3}
-12, -8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-9\right)±\sqrt{177}}{2\times 3}
81, 96 എന്നതിൽ ചേർക്കുക.
x=\frac{9±\sqrt{177}}{2\times 3}
-9 എന്നതിന്റെ വിപരീതം 9 ആണ്.
x=\frac{9±\sqrt{177}}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{177}+9}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{9±\sqrt{177}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 9, \sqrt{177} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{177}}{6}+\frac{3}{2}
6 കൊണ്ട് 9+\sqrt{177} എന്നതിനെ ഹരിക്കുക.
x=\frac{9-\sqrt{177}}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{9±\sqrt{177}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 9 എന്നതിൽ നിന്ന് \sqrt{177} വ്യവകലനം ചെയ്യുക.
x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
6 കൊണ്ട് 9-\sqrt{177} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{177}}{6}+\frac{3}{2} x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
\left(3x+6\right)\left(x-2\right)=x-4+8x
x+2 കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-12=x-4+8x
x-2 കൊണ്ട് 3x+6 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-12=9x-4
9x നേടാൻ x, 8x എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-12-9x=-4
ഇരുവശങ്ങളിൽ നിന്നും 9x കുറയ്ക്കുക.
3x^{2}-9x=-4+12
12 ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}-9x=8
8 ലഭ്യമാക്കാൻ -4, 12 എന്നിവ ചേർക്കുക.
\frac{3x^{2}-9x}{3}=\frac{8}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{9}{3}\right)x=\frac{8}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-3x=\frac{8}{3}
3 കൊണ്ട് -9 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{8}{3}+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=\frac{8}{3}+\frac{9}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-3x+\frac{9}{4}=\frac{59}{12}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{8}{3} എന്നത് \frac{9}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{3}{2}\right)^{2}=\frac{59}{12}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{59}{12}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{\sqrt{177}}{6} x-\frac{3}{2}=-\frac{\sqrt{177}}{6}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{177}}{6}+\frac{3}{2} x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}