പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x\left(x-2\right)-1=-\left(x-1\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 2 എന്നതിന് തുല്യമാക്കാനാകില്ല. x-2,2-x എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ x-2 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x^{2}-6x-1=-\left(x-1\right)
x-2 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-6x-1=-x+1
x-1 എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
3x^{2}-6x-1+x=1
x ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}-5x-1=1
-5x നേടാൻ -6x, x എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-5x-1-1=0
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
3x^{2}-5x-2=0
-2 നേടാൻ -1 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -5 എന്നതും c എന്നതിനായി -2 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
-5 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-2\right)}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 3}
-12, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 3}
25, 24 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-5\right)±7}{2\times 3}
49 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{5±7}{2\times 3}
-5 എന്നതിന്‍റെ വിപരീതം 5 ആണ്.
x=\frac{5±7}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{12}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{5±7}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 5, 7 എന്നതിൽ ചേർക്കുക.
x=2
6 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
x=-\frac{2}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{5±7}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 5 എന്നതിൽ നിന്ന് 7 വ്യവകലനം ചെയ്യുക.
x=-\frac{1}{3}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-2}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=2 x=-\frac{1}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x=-\frac{1}{3}
x എന്ന വേരിയബിൾ 2 എന്നതിന് തുല്യമാക്കാനാകില്ല.
3x\left(x-2\right)-1=-\left(x-1\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 2 എന്നതിന് തുല്യമാക്കാനാകില്ല. x-2,2-x എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ x-2 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x^{2}-6x-1=-\left(x-1\right)
x-2 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-6x-1=-x+1
x-1 എന്നതിന്‍റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്‍റെയും വിപരീതം കണ്ടെത്തുക.
3x^{2}-6x-1+x=1
x ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}-5x-1=1
-5x നേടാൻ -6x, x എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-5x=1+1
1 ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}-5x=2
2 ലഭ്യമാക്കാൻ 1, 1 എന്നിവ ചേർക്കുക.
\frac{3x^{2}-5x}{3}=\frac{2}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{5}{3}x=\frac{2}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{6}\right)^{2}
-\frac{5}{6} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{5}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{5}{6} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{5}{6} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{49}{36}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{2}{3} എന്നത് \frac{25}{36} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{5}{6}\right)^{2}=\frac{49}{36}
x^{2}-\frac{5}{3}x+\frac{25}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{5}{6}=\frac{7}{6} x-\frac{5}{6}=-\frac{7}{6}
ലഘൂകരിക്കുക.
x=2 x=-\frac{1}{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{5}{6} ചേർക്കുക.
x=-\frac{1}{3}
x എന്ന വേരിയബിൾ 2 എന്നതിന് തുല്യമാക്കാനാകില്ല.