x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-2
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
9x^{2}-6x=48
3x-2 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
9x^{2}-6x-48=0
ഇരുവശങ്ങളിൽ നിന്നും 48 കുറയ്ക്കുക.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\left(-48\right)}}{2\times 9}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 9 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി -48 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\left(-48\right)}}{2\times 9}
-6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{36-36\left(-48\right)}}{2\times 9}
-4, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{36+1728}}{2\times 9}
-36, -48 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{1764}}{2\times 9}
36, 1728 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-6\right)±42}{2\times 9}
1764 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{6±42}{2\times 9}
-6 എന്നതിന്റെ വിപരീതം 6 ആണ്.
x=\frac{6±42}{18}
2, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{48}{18}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{6±42}{18} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6, 42 എന്നതിൽ ചേർക്കുക.
x=\frac{8}{3}
6 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{48}{18} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{36}{18}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{6±42}{18} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6 എന്നതിൽ നിന്ന് 42 വ്യവകലനം ചെയ്യുക.
x=-2
18 കൊണ്ട് -36 എന്നതിനെ ഹരിക്കുക.
x=\frac{8}{3} x=-2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
9x^{2}-6x=48
3x-2 കൊണ്ട് 3x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{9x^{2}-6x}{9}=\frac{48}{9}
ഇരുവശങ്ങളെയും 9 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{6}{9}\right)x=\frac{48}{9}
9 കൊണ്ട് ഹരിക്കുന്നത്, 9 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{2}{3}x=\frac{48}{9}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{9} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}-\frac{2}{3}x=\frac{16}{3}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{48}{9} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{16}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{2}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{1}{3} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{16}{3}+\frac{1}{9}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{49}{9}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{16}{3} എന്നത് \frac{1}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{3}\right)^{2}=\frac{49}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{3}=\frac{7}{3} x-\frac{1}{3}=-\frac{7}{3}
ലഘൂകരിക്കുക.
x=\frac{8}{3} x=-2
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{1}{3} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}