ഘടകം
3\left(x+4\right)\left(x+7\right)x^{2}
മൂല്യനിർണ്ണയം ചെയ്യുക
3\left(x+4\right)\left(x+7\right)x^{2}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3\left(x^{4}+11x^{3}+28x^{2}\right)
3 ഘടക ലഘൂകരണം ചെയ്യുക.
x^{2}\left(x^{2}+11x+28\right)
x^{4}+11x^{3}+28x^{2} പരിഗണിക്കുക. x^{2} ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=11 ab=1\times 28=28
x^{2}+11x+28 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം x^{2}+ax+bx+28 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,28 2,14 4,7
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. 28 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+28=29 2+14=16 4+7=11
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=4 b=7
സൊല്യൂഷൻ എന്നത് 11 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}+4x\right)+\left(7x+28\right)
x^{2}+11x+28 എന്നത് \left(x^{2}+4x\right)+\left(7x+28\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x+4\right)+7\left(x+4\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 7 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x+4\right)\left(x+7\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x+4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
3x^{2}\left(x+4\right)\left(x+7\right)
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}