പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x^{2}-8-7x=0
ഇരുവശങ്ങളിൽ നിന്നും 7x കുറയ്ക്കുക.
3x^{2}-7x-8=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -7 എന്നതും c എന്നതിനായി -8 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\left(-8\right)}}{2\times 3}
-7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-7\right)±\sqrt{49-12\left(-8\right)}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{49+96}}{2\times 3}
-12, -8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-7\right)±\sqrt{145}}{2\times 3}
49, 96 എന്നതിൽ ചേർക്കുക.
x=\frac{7±\sqrt{145}}{2\times 3}
-7 എന്നതിന്‍റെ വിപരീതം 7 ആണ്.
x=\frac{7±\sqrt{145}}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{145}+7}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{7±\sqrt{145}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7, \sqrt{145} എന്നതിൽ ചേർക്കുക.
x=\frac{7-\sqrt{145}}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{7±\sqrt{145}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7 എന്നതിൽ നിന്ന് \sqrt{145} വ്യവകലനം ചെയ്യുക.
x=\frac{\sqrt{145}+7}{6} x=\frac{7-\sqrt{145}}{6}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x^{2}-8-7x=0
ഇരുവശങ്ങളിൽ നിന്നും 7x കുറയ്ക്കുക.
3x^{2}-7x=8
8 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
\frac{3x^{2}-7x}{3}=\frac{8}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{7}{3}x=\frac{8}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=\frac{8}{3}+\left(-\frac{7}{6}\right)^{2}
-\frac{7}{6} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{7}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{7}{6} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{8}{3}+\frac{49}{36}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{7}{6} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{145}{36}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{8}{3} എന്നത് \frac{49}{36} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{7}{6}\right)^{2}=\frac{145}{36}
x^{2}-\frac{7}{3}x+\frac{49}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{145}{36}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{7}{6}=\frac{\sqrt{145}}{6} x-\frac{7}{6}=-\frac{\sqrt{145}}{6}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{145}+7}{6} x=\frac{7-\sqrt{145}}{6}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{7}{6} ചേർക്കുക.