x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{4 \sqrt{7} + 20}{3} \approx 10.194335081
x = \frac{20 - 4 \sqrt{7}}{3} \approx 3.138998252
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3x^{2}-40x+96=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 3\times 96}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -40 എന്നതും c എന്നതിനായി 96 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 3\times 96}}{2\times 3}
-40 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-40\right)±\sqrt{1600-12\times 96}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-40\right)±\sqrt{1600-1152}}{2\times 3}
-12, 96 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-40\right)±\sqrt{448}}{2\times 3}
1600, -1152 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-40\right)±8\sqrt{7}}{2\times 3}
448 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{40±8\sqrt{7}}{2\times 3}
-40 എന്നതിന്റെ വിപരീതം 40 ആണ്.
x=\frac{40±8\sqrt{7}}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{8\sqrt{7}+40}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{40±8\sqrt{7}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 40, 8\sqrt{7} എന്നതിൽ ചേർക്കുക.
x=\frac{4\sqrt{7}+20}{3}
6 കൊണ്ട് 40+8\sqrt{7} എന്നതിനെ ഹരിക്കുക.
x=\frac{40-8\sqrt{7}}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{40±8\sqrt{7}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 40 എന്നതിൽ നിന്ന് 8\sqrt{7} വ്യവകലനം ചെയ്യുക.
x=\frac{20-4\sqrt{7}}{3}
6 കൊണ്ട് 40-8\sqrt{7} എന്നതിനെ ഹരിക്കുക.
x=\frac{4\sqrt{7}+20}{3} x=\frac{20-4\sqrt{7}}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
3x^{2}-40x+96=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
3x^{2}-40x+96-96=-96
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 96 കുറയ്ക്കുക.
3x^{2}-40x=-96
അതിൽ നിന്നുതന്നെ 96 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{3x^{2}-40x}{3}=-\frac{96}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{40}{3}x=-\frac{96}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{40}{3}x=-32
3 കൊണ്ട് -96 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{40}{3}x+\left(-\frac{20}{3}\right)^{2}=-32+\left(-\frac{20}{3}\right)^{2}
-\frac{20}{3} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{40}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{20}{3} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{40}{3}x+\frac{400}{9}=-32+\frac{400}{9}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{20}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{40}{3}x+\frac{400}{9}=\frac{112}{9}
-32, \frac{400}{9} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{20}{3}\right)^{2}=\frac{112}{9}
x^{2}-\frac{40}{3}x+\frac{400}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{20}{3}\right)^{2}}=\sqrt{\frac{112}{9}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{20}{3}=\frac{4\sqrt{7}}{3} x-\frac{20}{3}=-\frac{4\sqrt{7}}{3}
ലഘൂകരിക്കുക.
x=\frac{4\sqrt{7}+20}{3} x=\frac{20-4\sqrt{7}}{3}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{20}{3} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}