x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{\sqrt{166} + 10}{3} \approx 7.628032909
x=\frac{10-\sqrt{166}}{3}\approx -0.961366242
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3x^{2}-20x-12=10
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
3x^{2}-20x-12-10=10-10
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 10 കുറയ്ക്കുക.
3x^{2}-20x-12-10=0
അതിൽ നിന്നുതന്നെ 10 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
3x^{2}-20x-22=0
-12 എന്നതിൽ നിന്ന് 10 വ്യവകലനം ചെയ്യുക.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\left(-22\right)}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -20 എന്നതും c എന്നതിനായി -22 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 3\left(-22\right)}}{2\times 3}
-20 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-20\right)±\sqrt{400-12\left(-22\right)}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-20\right)±\sqrt{400+264}}{2\times 3}
-12, -22 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-20\right)±\sqrt{664}}{2\times 3}
400, 264 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-20\right)±2\sqrt{166}}{2\times 3}
664 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{20±2\sqrt{166}}{2\times 3}
-20 എന്നതിന്റെ വിപരീതം 20 ആണ്.
x=\frac{20±2\sqrt{166}}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2\sqrt{166}+20}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{20±2\sqrt{166}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 20, 2\sqrt{166} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{166}+10}{3}
6 കൊണ്ട് 20+2\sqrt{166} എന്നതിനെ ഹരിക്കുക.
x=\frac{20-2\sqrt{166}}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{20±2\sqrt{166}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 20 എന്നതിൽ നിന്ന് 2\sqrt{166} വ്യവകലനം ചെയ്യുക.
x=\frac{10-\sqrt{166}}{3}
6 കൊണ്ട് 20-2\sqrt{166} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{166}+10}{3} x=\frac{10-\sqrt{166}}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
3x^{2}-20x-12=10
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
3x^{2}-20x-12-\left(-12\right)=10-\left(-12\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 12 ചേർക്കുക.
3x^{2}-20x=10-\left(-12\right)
അതിൽ നിന്നുതന്നെ -12 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
3x^{2}-20x=22
10 എന്നതിൽ നിന്ന് -12 വ്യവകലനം ചെയ്യുക.
\frac{3x^{2}-20x}{3}=\frac{22}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{20}{3}x=\frac{22}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=\frac{22}{3}+\left(-\frac{10}{3}\right)^{2}
-\frac{10}{3} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{20}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{10}{3} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{22}{3}+\frac{100}{9}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{10}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{166}{9}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{22}{3} എന്നത് \frac{100}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{10}{3}\right)^{2}=\frac{166}{9}
x^{2}-\frac{20}{3}x+\frac{100}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{166}{9}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{10}{3}=\frac{\sqrt{166}}{3} x-\frac{10}{3}=-\frac{\sqrt{166}}{3}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{166}+10}{3} x=\frac{10-\sqrt{166}}{3}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{10}{3} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}