x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{\sqrt{21}}{6}+\frac{3}{2}\approx 2.263762616
x=-\frac{\sqrt{21}}{6}+\frac{3}{2}\approx 0.736237384
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3x^{2}-9x=-5
ഇരുവശങ്ങളിൽ നിന്നും 9x കുറയ്ക്കുക.
3x^{2}-9x+5=0
5 ഇരു വശങ്ങളിലും ചേർക്കുക.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 5}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -9 എന്നതും c എന്നതിനായി 5 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 5}}{2\times 3}
-9 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-9\right)±\sqrt{81-12\times 5}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-9\right)±\sqrt{81-60}}{2\times 3}
-12, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-9\right)±\sqrt{21}}{2\times 3}
81, -60 എന്നതിൽ ചേർക്കുക.
x=\frac{9±\sqrt{21}}{2\times 3}
-9 എന്നതിന്റെ വിപരീതം 9 ആണ്.
x=\frac{9±\sqrt{21}}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{21}+9}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{9±\sqrt{21}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 9, \sqrt{21} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{21}}{6}+\frac{3}{2}
6 കൊണ്ട് 9+\sqrt{21} എന്നതിനെ ഹരിക്കുക.
x=\frac{9-\sqrt{21}}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{9±\sqrt{21}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 9 എന്നതിൽ നിന്ന് \sqrt{21} വ്യവകലനം ചെയ്യുക.
x=-\frac{\sqrt{21}}{6}+\frac{3}{2}
6 കൊണ്ട് 9-\sqrt{21} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{21}}{6}+\frac{3}{2} x=-\frac{\sqrt{21}}{6}+\frac{3}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
3x^{2}-9x=-5
ഇരുവശങ്ങളിൽ നിന്നും 9x കുറയ്ക്കുക.
\frac{3x^{2}-9x}{3}=-\frac{5}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{9}{3}\right)x=-\frac{5}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-3x=-\frac{5}{3}
3 കൊണ്ട് -9 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{5}{3}+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=-\frac{5}{3}+\frac{9}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-3x+\frac{9}{4}=\frac{7}{12}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{5}{3} എന്നത് \frac{9}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{3}{2}\right)^{2}=\frac{7}{12}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{7}{12}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{\sqrt{21}}{6} x-\frac{3}{2}=-\frac{\sqrt{21}}{6}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{21}}{6}+\frac{3}{2} x=-\frac{\sqrt{21}}{6}+\frac{3}{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}