പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x^{2}-21x=0
ഇരുവശങ്ങളിൽ നിന്നും 21x കുറയ്ക്കുക.
x\left(3x-21\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=7
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 3x-21=0 എന്നിവ സോൾവ് ചെയ്യുക.
3x^{2}-21x=0
ഇരുവശങ്ങളിൽ നിന്നും 21x കുറയ്ക്കുക.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -21 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-21\right)±21}{2\times 3}
\left(-21\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{21±21}{2\times 3}
-21 എന്നതിന്‍റെ വിപരീതം 21 ആണ്.
x=\frac{21±21}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{42}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{21±21}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 21, 21 എന്നതിൽ ചേർക്കുക.
x=7
6 കൊണ്ട് 42 എന്നതിനെ ഹരിക്കുക.
x=\frac{0}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{21±21}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 21 എന്നതിൽ നിന്ന് 21 വ്യവകലനം ചെയ്യുക.
x=0
6 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=7 x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x^{2}-21x=0
ഇരുവശങ്ങളിൽ നിന്നും 21x കുറയ്ക്കുക.
\frac{3x^{2}-21x}{3}=\frac{0}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{21}{3}\right)x=\frac{0}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-7x=\frac{0}{3}
3 കൊണ്ട് -21 എന്നതിനെ ഹരിക്കുക.
x^{2}-7x=0
3 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -7-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{7}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{7}{2} സ്ക്വയർ ചെയ്യുക.
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
x^{2}-7x+\frac{49}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
ലഘൂകരിക്കുക.
x=7 x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{7}{2} ചേർക്കുക.