പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x^{2}+6x+8=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 8}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി 8 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-6±\sqrt{36-4\times 3\times 8}}{2\times 3}
6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-6±\sqrt{36-12\times 8}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-6±\sqrt{36-96}}{2\times 3}
-12, 8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-6±\sqrt{-60}}{2\times 3}
36, -96 എന്നതിൽ ചേർക്കുക.
x=\frac{-6±2\sqrt{15}i}{2\times 3}
-60 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-6±2\sqrt{15}i}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-6+2\sqrt{15}i}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-6±2\sqrt{15}i}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 2i\sqrt{15} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{15}i}{3}-1
6 കൊണ്ട് -6+2i\sqrt{15} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{15}i-6}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-6±2\sqrt{15}i}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 2i\sqrt{15} വ്യവകലനം ചെയ്യുക.
x=-\frac{\sqrt{15}i}{3}-1
6 കൊണ്ട് -6-2i\sqrt{15} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{15}i}{3}-1 x=-\frac{\sqrt{15}i}{3}-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x^{2}+6x+8=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
3x^{2}+6x+8-8=-8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
3x^{2}+6x=-8
അതിൽ നിന്നുതന്നെ 8 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{3x^{2}+6x}{3}=-\frac{8}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{6}{3}x=-\frac{8}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+2x=-\frac{8}{3}
3 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
x^{2}+2x+1^{2}=-\frac{8}{3}+1^{2}
1 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 1 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+2x+1=-\frac{8}{3}+1
1 സ്ക്വയർ ചെയ്യുക.
x^{2}+2x+1=-\frac{5}{3}
-\frac{8}{3}, 1 എന്നതിൽ ചേർക്കുക.
\left(x+1\right)^{2}=-\frac{5}{3}
x^{2}+2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-\frac{5}{3}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+1=\frac{\sqrt{15}i}{3} x+1=-\frac{\sqrt{15}i}{3}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{15}i}{3}-1 x=-\frac{\sqrt{15}i}{3}-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.