പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x+9-6y=0
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 6y കുറയ്ക്കുക.
3x-6y=-9
ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
-2x-2y=12
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 12 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x-6y=-9,-2x-2y=12
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3x-6y=-9
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
3x=6y-9
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 6y ചേർക്കുക.
x=\frac{1}{3}\left(6y-9\right)
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=2y-3
\frac{1}{3}, 6y-9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-2\left(2y-3\right)-2y=12
-2x-2y=12 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി 2y-3 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-4y+6-2y=12
-2, 2y-3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-6y+6=12
-4y, -2y എന്നതിൽ ചേർക്കുക.
-6y=6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
y=-1
ഇരുവശങ്ങളെയും -6 കൊണ്ട് ഹരിക്കുക.
x=2\left(-1\right)-3
x=2y-3 എന്നതിലെ y എന്നതിനായി -1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-2-3
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-5
-3, -2 എന്നതിൽ ചേർക്കുക.
x=-5,y=-1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
3x+9-6y=0
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 6y കുറയ്ക്കുക.
3x-6y=-9
ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
-2x-2y=12
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 12 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x-6y=-9,-2x-2y=12
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\12\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-6\left(-2\right)\right)}&-\frac{-6}{3\left(-2\right)-\left(-6\left(-2\right)\right)}\\-\frac{-2}{3\left(-2\right)-\left(-6\left(-2\right)\right)}&\frac{3}{3\left(-2\right)-\left(-6\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\12\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&-\frac{1}{3}\\-\frac{1}{9}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-9\\12\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\left(-9\right)-\frac{1}{3}\times 12\\-\frac{1}{9}\left(-9\right)-\frac{1}{6}\times 12\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=-5,y=-1
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
3x+9-6y=0
ആദ്യ സമവാക്യം പരിഗണിക്കുക. ഇരുവശങ്ങളിൽ നിന്നും 6y കുറയ്ക്കുക.
3x-6y=-9
ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
-2x-2y=12
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. 12 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
3x-6y=-9,-2x-2y=12
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
-2\times 3x-2\left(-6\right)y=-2\left(-9\right),3\left(-2\right)x+3\left(-2\right)y=3\times 12
3x, -2x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും -2 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും ഗുണിക്കുക.
-6x+12y=18,-6x-6y=36
ലഘൂകരിക്കുക.
-6x+6x+12y+6y=18-36
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് -6x+12y=18 എന്നതിൽ നിന്ന് -6x-6y=36 കുറയ്ക്കുക.
12y+6y=18-36
-6x, 6x എന്നതിൽ ചേർക്കുക. -6x, 6x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
18y=18-36
12y, 6y എന്നതിൽ ചേർക്കുക.
18y=-18
18, -36 എന്നതിൽ ചേർക്കുക.
y=-1
ഇരുവശങ്ങളെയും 18 കൊണ്ട് ഹരിക്കുക.
-2x-2\left(-1\right)=12
-2x-2y=12 എന്നതിലെ y എന്നതിനായി -1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
-2x+2=12
-2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-2x=10
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
x=-5
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഹരിക്കുക.
x=-5,y=-1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.