പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

9x-2y=12
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
3x+2y=12,9x-2y=12
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
3x+2y=12
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
3x=-2y+12
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
x=\frac{1}{3}\left(-2y+12\right)
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x=-\frac{2}{3}y+4
\frac{1}{3}, -2y+12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
9\left(-\frac{2}{3}y+4\right)-2y=12
9x-2y=12 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{2y}{3}+4 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-6y+36-2y=12
9, -\frac{2y}{3}+4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-8y+36=12
-6y, -2y എന്നതിൽ ചേർക്കുക.
-8y=-24
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 36 കുറയ്ക്കുക.
y=3
ഇരുവശങ്ങളെയും -8 കൊണ്ട് ഹരിക്കുക.
x=-\frac{2}{3}\times 3+4
x=-\frac{2}{3}y+4 എന്നതിലെ y എന്നതിനായി 3 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=-2+4
-\frac{2}{3}, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=2
4, -2 എന്നതിൽ ചേർക്കുക.
x=2,y=3
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
9x-2y=12
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
3x+2y=12,9x-2y=12
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}3&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}3&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
\left(\begin{matrix}3&2\\9&-2\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-2\times 9}&-\frac{2}{3\left(-2\right)-2\times 9}\\-\frac{9}{3\left(-2\right)-2\times 9}&\frac{3}{3\left(-2\right)-2\times 9}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 12+\frac{1}{12}\times 12\\\frac{3}{8}\times 12-\frac{1}{8}\times 12\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=2,y=3
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
9x-2y=12
രണ്ടാമത്തെ സമവാക്യം പരിഗണിക്കുക. എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
3x+2y=12,9x-2y=12
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
9\times 3x+9\times 2y=9\times 12,3\times 9x+3\left(-2\right)y=3\times 12
3x, 9x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 9 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 3 കൊണ്ടും ഗുണിക്കുക.
27x+18y=108,27x-6y=36
ലഘൂകരിക്കുക.
27x-27x+18y+6y=108-36
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 27x+18y=108 എന്നതിൽ നിന്ന് 27x-6y=36 കുറയ്ക്കുക.
18y+6y=108-36
27x, -27x എന്നതിൽ ചേർക്കുക. 27x, -27x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
24y=108-36
18y, 6y എന്നതിൽ ചേർക്കുക.
24y=72
108, -36 എന്നതിൽ ചേർക്കുക.
y=3
ഇരുവശങ്ങളെയും 24 കൊണ്ട് ഹരിക്കുക.
9x-2\times 3=12
9x-2y=12 എന്നതിലെ y എന്നതിനായി 3 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
9x-6=12
-2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
9x=18
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 6 ചേർക്കുക.
x=2
ഇരുവശങ്ങളെയും 9 കൊണ്ട് ഹരിക്കുക.
x=2,y=3
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.